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ABSTRACT

Many modern systems, including web servers, database engines, and operating

system kernels, are using language-based protection mechanisms to provide the

safety and integrity traditionally supplied by hardware. As these language-based

systems become used in more demanding situations, they are faced with the same

problems that traditional operating systems have solved—namely shared resource

management, process separation, and per-process resource accounting. While many

incremental changes to language-based, extensible systems have been proposed,

this thesis demonstrates that comprehensive solutions used in traditional operating

systems are applicable and appropriate.

This thesis describes Alta, an implementation of the Fluke operating system’s

nested process model in a Java virtual machine. The nested process model is

a hierarchical operating system process model designed to provide a consistent

approach to user-level, per-process resource accounting and control. This model

accounts for CPU usage, memory, and other resources through a combination of

system primitives and a flexible, capability-based mechanism.

Alta supports nested processes and interprocess communication. Java applica-

tions running on Alta can create child processes and regulate the resources—the

environment—of those processes. Alta demonstrates that the Java environment

is sufficient for hosting traditional operating system abstractions. Alta extends

the nested process model to encompass Java-specific resources such as class files,

modifies the model to leverage Java’s type safety, and extends the Java type system

to support safe fine-grained sharing between different applications. Existing Java

applications work without modification on Alta.

Alta is compared in terms of structure, implementation and performance to

Fluke and traditional hardware-based operating systems. A small set of test appli-



cations demonstrate flexible, application-level control over memory usage and file

access.

v
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CHAPTER 1

INTRODUCTION

In operating systems, the process is the abstraction that separates the kernel

from applications and applications from each other. The process is the scope of

resource management and identity; for example, most operating systems impose

per-process memory limits and perform per-process access checks. Traditionally,

process separation—the principle of preventing malicious or incorrect code from

accessing protected data—has been enforced by hardware protection mechanisms.

The memory mapping hardware in these systems can check individual read or

write accesses to a page of memory. By manipulating the memory mapping per-

missions, a kernel can give different access privileges to different processes. Such

low-level enforcement successfully isolates both malicious and faulty processes.

Fine-grained sharing, however, is awkward, expensive, or impossible because data

sharing between processes can only be protected on coarse, page-based boundaries.

This property of hardware-supported operating systems, coupled with the cost of

switching permission tables, encourages an application structure that minimizes the

number of process “boundary crossings” and reduces interprocess sharing to coarse

page-based methods [49].

As an alternative to hardware-enforced separation, software-based separation

methods perform memory access permission checks in software. Cedar [44] from

Xerox PARC was the first to rely on software-based protection; Cedar allowed

users to change or add system features via “extensions.” Extensions in Cedar and

other systems are externally defined modules that extend or modify the behavior or

available functionality of a system. Other extensible systems include SPIN [9], the

HotJava WWW browser [42], Oberon [52] and even the Emacs editor [41]. While
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web browsers and text editors are not operating systems in a traditional sense,

both of these systems may need to manage and control their extensions in the same

manner as an operating system.

Software-based protection mechanisms are also useful in systems that have no

memory protection hardware. For example, the Apple Newton’s NewtonOS [50]

uses software-based protection mechanisms to separate the “kernel” from applica-

tions because the Newton does not include hardware for enforcing memory protec-

tions.

Software-based protection mechanisms can take several forms, including type-

safe languages, annotated code systems, and checkable (or provable) code accom-

panied by a proof. All of these systems use compile-time, load-time or run-time

checks to prevent a program from making illegal memory accesses. Annotated code

systems, such as SFI [2], and provable code systems, such as PCC [34], have the

advantage that they support legacy programming languages as the annotations (or

proof) can be generated after the code is compiled. Currently, safe languages are

more mature than either annotated code or provable code systems.

Although most software-based operating systems are defined in terms of “exten-

sions” and operating system models are defined in terms of “processes,” the only

distinction seems to be a subjective measure of the size or independence of the

module. A running application is usually considered a process while a modification

to a larger system is usually considered an extension, but the distinction is arbitrary

and the terms can be interchanged.

Existing software-based operating systems tend to be designed for single-user en-

vironments. Cedar, for example, was designed to make the operating system of the

Xerox Alto computer extensible by the sole user of the system, thus avoiding many

trust and safety issues. Oberon [53] makes a critical design assumption that restricts

it to a single-user environment: tasks are not preemptible. The protections provided

by languages for these inherently single-user environments can effectively shield

the system from the majority of erroneous applications, but provide opportunities

for malicious programs to bring a system down. As operating systems employing
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software-based protection mechanisms become used in more widely networked and

multiuser environments, protecting a system from merely incorrect applications is

insufficient. Protection needs to be extended to contain malicious and destructive

applications, especially in the area of resource management.

Protection from and separation of mutually untrusting applications is the same

problem that traditional, hardware-based multiuser operating systems face, and

thus solutions from that domain should be applicable to language-based operating

systems. To demonstrate that language-based extensible systems can benefit from

the models developed for traditional operating systems, this thesis incorporates the

process model and API from the Fluke operating system [20, 22] into Alta, a new

virtual machine based on the Java virtual machine (JVM) [27]. The result is a

JVM that supports nested processes and direct, hierarchical resource controls—the

same set of services and protections that the Fluke model provides in a hardware-

supported microkernel.

I chose to base Alta on the Fluke process model, or nested process model, for

several reasons. First, the model incorporates per-process resource controls. Sec-

ond, the nested process model infrastructure enables system services to be provided

outside of the kernel, a feature appropriate for mobile-code platforms [45]. Third,

the model is a complete process model: it specifies interprocess communication and

synchronization primitives in addition to the basic process abstraction. Finally, I

have experience with Fluke [21, 22, 46, 47].

Java was chosen as the “host” language for Alta because it provides the type-

safety, language-level access control, and run-time environment necessary for an

extensible system [32]. Java is also popular, and is used in a number of widespread

systems, such as web servers and web browsers, that can benefit from more com-

prehensive support for extensions and resource controls.

The term “virtual machine” has different meanings in the context of Fluke,

Java, and Alta, all of which are fundamentally similar. In Java the phrase “virtual

machine” usually describes the Java bytecode interpreter/compiler and run-time

support because these components act as a machine simulator. In Fluke, which is
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modeled on recursive virtual machines [26], the phrase “virtual machine” is defined

as the environment that encapsulates a process because the process runs in the

context of a virtualized machine. Both of these definitions are, in essence, about

the presentation of a machine-like, virtual interface for an application. In this

thesis, the phrase “virtual machine” describes a generic Java virtual machine.

1.1 An Alta sandbox

The remainder of this chapter describes the Alta sandbox, an extended example

of how an application might take advantage of Alta’s process model. A sandbox is a

controlled environment for untrusted code to execute in. The code gets to play the

in safe and simple sandbox but is not allowed to directly access many, potentially

unsafe, operations.

The Java applet sandbox, is the basis for a web browser’s ability to control

arbitrary, downloaded code. The sandbox is designed to contain applets and

restrict an applet’s access to critical system resources. The original Java sandbox,

as implemented in JDK 1.0.2,1 provides a very strict access policy: applets are

not allowed to access the local file system in any way, and they may only use

network facilities to connect back to the host from which they originated. In later

implementations of the JDK, an appropriately identified applet can be placed in a

less restricted sandbox or even completely escape the sandbox.

Redefining the applet framework to take advantage of Alta’s nested process

features demonstrates two aspects of Alta. First, the Alta sandbox demonstrates

that Alta provides sufficient mechanism to satisfy the containment requirements of

the Java specification; second, the sandbox demonstrates application-level control

over other applications. Additionally, the Alta sandbox provides a number of new

features beyond the original. Applications running in the sandbox are only able

to use the amount of memory granted to them. Each sandboxed application has

its own separate static variable namespace. Sandboxed applications can contain

1The JDK is Sun Microsystem’s Java Development Kit which is the reference implementation
for any given Java version.
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sub-sandboxed child applications, and can use the java.lang.ClassLoader (for

dynamically loading classes) and can create java.lang.ThreadGroups. These last

two abilities are unavailable in the basic Java sandbox.

The Alta sandbox uses three mechanisms to contain and control processes.

First, per-process static member data, per-process memory limits, and per-process

class namespace control are directly supported by Alta. Second, simple limits

are enabled by controlling the class namespace of the sandboxed process. For

example, to completely deny access to the local file system, a sandbox could

map the file access classes in its child to classes that throw an exception if any

methods are invoked. The third mechanism for containing child processes is the

Alta capability system. For example, to enforce a policy that denies network access

after an application has accessed the local file system, a sandbox could use the class

namespace controls to install replacement classes for the file and network access

classes. These replacements would use capabilities and IPC, in place of native

method calls, to perform the file or network operation. Thus a sandbox could make

dynamic decisions about granting or denying access to the network based on the

file access patterns of the application. (Section 3.2.2.1 will explain this process in

more detail.)

1.2 Roadmap

Chapter 2 details Fluke’s nested process model and provides a short introduction

to Java. The design of Alta is outlined in Chapter 3, followed by results and

analysis in Chapter 4. Some future directions for Alta are listed in Chapter 5.

Chapter 6 discusses other work that supports a process abstraction in Java and

other language-based systems, along with work in safe languages and extensible

systems in general. Chapter 7 presents conclusions that can be drawn from this

work. Appendix A documents the Alta kernel API and Appendix B documents the

interposable IPC-based API (IPCIF API).



CHAPTER 2

BACKGROUND

This chapter provides a brief introduction to Java and provides background on

the design and development of Fluke’s nested process model.

2.1 Java

Java is an object-oriented, type-safe, garbage-collected language that directly

supports synchronization, multithreading, and exceptions [32]. Java source code

is generally compiled to bytecodes (pseudo-instructions for a virtual machine) that

are verified and executed by a Java Virtual Machine [27]. Because of the type-safety

provided by the language, compiler, and verifier, Java is a reasonable environment

in which to run untrusted code. Just as the use of memory protection hardware by

a standard operating system provides protection from a large class of malicious or

buggy code, the Java language and the verifiers for compiled bytecodes provide a

similar level of protection.

While Java is designed to provide enough safety to run untrusted programs,

available implementations and parts of the design have well-known flaws [16, 40].

Other work is being done on improving bytecode verification [28, 39] and on other

aspects of Java security [49]. For the purposes of this thesis, I assume that the

verifier and interpreter do their jobs correctly. The implementation of Alta is based

on a freely available JVM, Kaffe [51], which currently has neither a working verifier

nor support for some of the language-level access controls.

Java applications run in an environment that has two basic components: the

Java virtual machine [32] and the standard Java libraries [11, 12]. The virtual

machine interprets or compiles bytecodes and provides threading and garbage col-

lection. The standard Java libraries implement the various Java programming
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interfaces and standard services. Many of the classes in the standard Java libraries

are implemented entirely in Java and are independent of the virtual machine. On

the other hand, many of the core Java classes—those in the java.lang package—are

tightly integrated with the implementation of the virtual machine. To access

underlying system services, such as the file system or the network, classes must

utilize native methods—methods that are not implemented in Java.

Because “Java” is both the name of the Virtual Machine interpreter/compiler

and the language I will refer to the interpreter as the Java virtual machine or

“JVM.” When I use “Java” unadorned, I mean the language.

2.2 The Fluke nested process model

The Fluke nested process model is an architecture for organizing and controlling

processes that compete for resources. Processes request services and resources from

“ancestor” processes, which can grant, deny, or pass on requests. The model

provides explicit, low-level support for the two most critical resources: memory

and the CPU. More abstract resources, such as files, network access and processes,

are controlled through a set of capability-based interfaces: capabilities are the basic

mechanism for communication between processes. Figure 2.1 diagrams the nested

process model.

The nested process model is implemented in Fluke [22], a prototype microkernel

written in C that supports posix-like processes that access high-level services

through an IPC-based API; primitives and basic services such as synchronization

and scheduling are provided directly by the kernel. Processes are separated by

standard hardware memory protection—each process runs in its own address space.

Because cross address-space communication is heavyweight, applications must pro-

vide a great deal of functionality for each cross-process invocation; thus, Fluke is a

suitable environment for virtual memory management, process management, check-

pointing, file systems, and other heavyweight services. What Fluke is not suitable

for is small, communicative components that share complex data structures.

Processes in the nested process model can be “nested”: a completely encap-
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Figure 2.1. A nonartist’s visualization of the nested process model in Alta. The
two L-shaped boxes represent the trusted base of the system: the virtual machine
(the left-side and bottom-most L) and the “kernel” or nested process model runtime
(the right-side L). These two components contain the processes (the oval-shaped
boxes); older processes (ancestors) are closer to the bottom of the box. The vertical
arrows from each process to its ancestors represent access through IPC-based
interfaces. In this example, the youngest process is getting two services from its
grandparent and one service from its immediate parent. At all levels of the process
hierarchy, a process has direct access to the basic virtual machine instructions and
the low-level kernel API.

sulated process requests services and resources exclusively from its parent. Total

encapsulation benefits the parent process, as it is assured of what resources the child

process uses. Additionally, encapsulation enables the child process to manage its

own children, while the parent is oblivious to the presence of anything more complex

than a single child running within it. Nesting enables applications to contain whole

hierarchies of processes, and for different applications to be composed together in
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a system.

While the focus of the nested process model is hierarchical nesting and the

notion of a hierarchy of processes is explicitly supported by the model, it is worth

noting that interprocess communication need not follow the hierarchy. For example,

in a system where a common ancestor process is willing to receive capabilities from

child processes and hand them out to arbitrary children, then any processes in the

system that can communicate with the ancestor process can get capabilities to com-

municate directly with each other. Figure 2.2 illustrates a specific instance of this

communication. Additionally, while resource allocations are generally hierarchical,

it is not necessary to explicitly manage each resource at each level of the hierarchy.

For example, a parent process can spawn two child processes and interpose only on

their file system accesses and not on any other resource; the children only pay a

cost for the interposed accesses. Continuing with Figure 2.1, the “Parent” process

is interposing on only one interface and letting “Child” communicate directly with

root

(a) (b)

root

(c)

C1 C2 C2C1 C1 C2

P2P1 P2 P2P1 P1

root

Figure 2.2. Establishing a communication path independent of the process
hierarchy. Process C1 can set up direct communication with process C2 in the
following way. (a) Process C1 sends a capability to the root process (or any other
shared ancestor of C1 and C2). (b) Process C2 obtains the capability from the
root process. (c) C1 and C2 can communicate directly with each other. The
straight lines represent the ancestor relationship between a process and its parent.
The dashed arcs represent the path that IPC operations follow. Note that this is
feasible only if processes P1 and the root cooperate for step (a), and processes P2
and the root cooperate for step (b). Any of these processes can refuse to share the
capability, thereby stopping C1 and C2 from communicating directly.
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“Grand Parent” on the other two interfaces.

To support user-level virtual memory servers and flexible, user-level checkpoint-

ers [46], Fluke provides a mechanism for a process to extract the kernel “state” of

any low-level object (see Section 3.2.7). It is not necessary that all actual kernel

state be exported, but that any state not exported can be derived from state that

is exported. For example, in Fluke a parent must be able to get enough state

from a thread to create a new thread that is indistinguishable from the original.

To support such state transparency, the kernel, in addition to providing all the

state, must provide the state in a clean and timely fashion. For example, the kernel

cannot suspend a parent process indefinitely while the parent accesses some state,

as this would give a child some measure of control over its parent.

There are three distinct components of the nested process model programming

interface. First is the basic instruction set in the underlying “machine”—hardware

machine instructions (in Fluke) or virtual machine instructions (in Alta). The

second component is the low-level programming interface that provides basic ab-

stractions for managing memory and threads, plus the basic infrastructure for com-

munication, sharing, and synchronization between processes. The third component

is the set of high-level, interposable interfaces for standard OS abstractions. The

first two components are always directly available to all applications, while the set

of interposable interfaces available to an application is controlled by its ancestors.

The basic instruction set is usually predefined and cannot be modified to sup-

port the nested process model. The instruction set should not, however, contain

instructions that operate on global state, as those operations will not be subject

to interposition. For example, the mov instruction is allowable because it only

affects the provided operands. On the other hand, instructions such as the Intel

x86 gettsc instruction are not nestable because they return global information—in

this case, a global notion of time.1 Generally, privileged instructions (such as I/O

instructions) need to be made subject to interposition and should only be directly

1There are certainly solutions for problematic instructions such as gettsc; in this case it may
be desirable to simply leave it as an accessible instruction.
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executed by the kernel.

The low-level API that provides the basic abstractions in the system has the

same restrictions as the basic instruction set. Thus, all operations at this level

operate only on provided state—that is, the operations manipulate state provided

by the caller. (These operations may impact “global” kernel state, but only it is soft

state and never directly visible outside the kernel.) Table 2.1 shows each object

supported by the low-level Fluke API. Generally, each object supports create,

destroy, and reference operations in addition to object-specific operations. Note

that no object provides direct access to any resources. For example, the memory

mapping primitives require that another process provide the memory to be mapped.

(In Fluke, a special kernel process bootstraps this recursion.)

The third component, the IPC-based protocols, is where the nested process

model resembles traditional capability-based systems and is where processes are

able to exert control over other processes through interposition. Well-defined

protocols should be amenable to flexible interposition (e.g., a process should not

have to interpose on the memory interface if it only wants to interpose on file

system access) and should match the style of high-level API used by system pro-

cesses. In Fluke, for example, the IPC-based protocols are designed to support a

posix-compatible standard C library. Appendix B provides more details on Alta’s

Table 2.1. The kernel objects defined by Fluke.

Object Description
Space Container for threads and memory.
Thread A thread of control in a Space.
Region A contiguous range of virtual memory that can be exported.
Mapping A contiguous range of virtual memory that is imported.
Port A destination for client thread IPC requests.
Port Set A collection of ports on which a single (server) thread can wait.
Reference A cross-process reference to another object (a capability).
Mutex A safe, cross-process mutex.
Cond A safe, cross-process condition variable.
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IPC-based protocols which were defined to match the requirements of the Java

standard libraries.



CHAPTER 3

DESIGN OF ALTA

Alta implements the nested process model in a Java Virtual Machine. To

accomplish this merger both the process model and the virtual machine’s existing

execution model were modified.

To implement a process abstraction in Java, Alta introduces new core objects to

Java. Existing Java objects that provide rudimentary support for separation and

control, such as the ClassLoader or ThreadGroup, are insufficient. Section 3.2.2.1

will explain how ClassLoaders do not provide the level of control over the name

to class binding that is required by Alta. ThreadGroups in Java are merely a

convenient mechanism for stopping a related group of threads. Adding the memory

control, IPC and disjoint typespaces required by Alta on top of existing Java

classes would prevent Alta from being backward-compatible with existing Java

applications. For example, making the ThreadGroup the process container would

fundamentally alter the meaning of creating a new ThreadGroup.

This chapter is divided into two parts: an overview, in six parts, of the design

of Alta, followed by a detailed analysis of those six features.

3.1 Overview of the nested process model in Alta

This section outlines six features of Alta, compares them with similar features

found in traditional JVMs and Fluke, and then sketches a short motivation for each.

Figure 3.1 presents a high-level view of the Alta architecture. The base of the figure

shows the host system for the Alta virtual machine: a traditional operating system

or a library layer such as the Flux OSKit [19]. Based on this foundation is the Alta

virtual machine—the virtual machine and the core native methods. Above this are

the Alta object libraries and the standard Java libraries. The IPC-based interfaces,
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Native methodsCore VM

Applications

Standard
Java

Libraries

Base operating system

IPCIF

Core Alta Objects

Figure 3.1. A high-level view of the module dependencies and relationships in
Alta. At the top, the applications depend on every component beneath them. The
IPC-based library (IPCIF) provides services using the core Alta library and the
standard Java libraries. These libraries (written in Java) are all dependent upon
the virtual machine and the basic native methods. Beneath the virtual machine is
the traditional host operating system and its standard libraries. The dashed box
represents the Alta kernel.

or IPCIF layer, is the last layer before the applications (in Fluke these interfaces

are know as the “Common Protocols”).

The Alta kernel is represented by the components inside the dashed box on the

left side of the figure. Crossing this boundary is effectively equivalent to a kernel

system call trap in a traditional operating system [5].

3.1.1 Each process is a complete JVM

The first goal for Alta is to provide the illusion of a complete Java virtual

machine to each process in the system—just as any operating system strives to

convince each process that it owns the whole machine. In Java, preserving this
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illusion requires that each process have its own set of static variables, its own set of

classes, and its own set of basic objects (such as System.out, a root thread group,

etc.).

3.1.2 Alta typespaces

To support the nested process model, the Alta class loading mechanism gives

a parent process complete control over the binding of fully qualified class names

(such as “java.io.File”) to class files. The mapping of class names to class files in

a process defines the typespace of that process. In Alta, each process has its own

private typespace. The parent process is responsible for resolving requests to bind

a class name in a child’s typespace.

3.1.3 Interprocess sharing

Even though different processes may have disjoint typespaces, the virtual ma-

chine has sufficient information to allow safe sharing of objects between processes.

Allowing processes to share fine-grained objects efficiently and safely is potentially

critical to the performance of a safe, language-based operating system [49]. In-

terprocess sharing is naturally in conflict with process separation and complicates

resource control. The hierarchy of the nested process model provides a simple

mechanism for processes in Alta to control the degree of separation (and conversely

the degree of sharing) in the system.

3.1.4 Core API implementation

The low-level nested process model API is presented to Java applications as

the set of classes in the package edu.utah.npm.core, defined in Appendix A.

Implementation of the code supporting this API—the kernel code—required similar

techniques for protecting it from user processes as are required in a traditional

kernel. Additionally, this API is based on the original API designed for Fluke,

with modifications to account for Java in the following three areas. First, processes

may send Java object references through IPC; second, memory management is

accomplished at a higher level of abstraction in Alta; third, Alta does not support
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state extraction or injection for any kernel objects.

3.1.5 Core resource controls

The major design goal for Alta is to provide a framework for comprehensive

resource accounting and control to Java processes. The two core resources explicitly

managed by the kernel in the nested process model are memory and CPU. Alta

was designed to account for as much of the memory used by a process as possible.

For example, the memory used to retain the JIT version of a method is stored

in memory charged to the process that performed the JIT compilation. The

nested process model specifies a flexible CPU management scheme, CPU inheritance

scheduling [23], which I have not implemented in Alta. CPU inheritance scheduling

appears to be a good match for Alta but the implementation effort to support it is

beyond the scope of this thesis.

3.1.6 IPC-based interfaces

The Alta IPC-based interfaces are based around the native methods used by

the core Java libraries. That is, the IPC-based interfaces have been tailored to the

requirements of the core Java libraries. Native methods have been grouped and

interposition is accomplished on a group basis. For example, there is a group of

operations for the file system, a group for individual file I/O, a group for memory

management, etc. The grouping of the IPC-based interfaces in Alta is comparable

to the grouping of the posix oriented, IPC-based interfaces in Fluke.

3.1.7 Exportable state

Fluke supports the full extraction of kernel object state, which is critical for

complete virtual memory managers and multi-process checkpointers [46]. Alta does

not support exportable state of kernel objects. The type-safe extraction of a thread

stack is well beyond the scope of this thesis (and perhaps impossible). Support for

fully exportable state is required for a number of user-level services but, as Alta

demonstrates, it is not a critical component of the nested process model.
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3.2 The nested process model in Alta

This section provides a detailed review of each of the six areas outlined in the

previous section. Features that are derived from existing Java virtual machines

are compared to those found in JVMs; features that are derived from traditional

operating systems are compared to those found in Fluke and other traditional

systems.

3.2.1 Each process is a complete Java virtual machine

Alta processes are designed to run whole Java applications, unmodified. All

of the services and capabilities available in a traditional Java virtual machine are

available to each process in Alta. Each process has its own root java.lang.-

ThreadGroup, its own root java.lang.ClassLoader, and any process may define

its own classloaders. All threads in the system are associated with exactly one

process, memory is divided on a per-process basis, and each process defines a

typespace. Finally, each process owns a port reference, called the keeper port, where

the process can make initial requests for services, resolve names in its typespace;

and signal when all its threads have died.

In Alta, each process has its own copy of the static data associated with a class,

maintaining the illusion that each process has a separate virtual machine. Static

data is associated with a class but not with any instance of that class. In existing

Java virtual machines, static data is effectively global data (though visibility of the

data may be controlled by language-level access modifiers, such as private).

As an unfortunate side-effect of the per-process static data and the separate

typespaces, each process in Alta maintains its own copy of JIT (Just In Time)

compiled methods. (Typespaces are explained in the next section.) The JIT

compiler in Kaffe—the virtual machine Alta is based on—inlines static variable

references into generated code. Thus a reference to the static variable java.-

lang.System.out in a method would be JIT-compiled into a direct reference to

the address of the java.lang.System.out static variable. Additionally, separate

typespaces mean that class hierarchies may differ between typespaces, and the

compiled methods must reflect this difference. Per-process JIT compiled methods
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are effectively equivalent to using statically linked binaries in traditional operating

systems. Changes to the JIT compiler in Alta to make static variable accesses

indirect and to share code between equivalent typespaces are areas for future work.

Separation of processes is the cornerstone of resource control in Alta. Resources

are allocated on a per-process basis in Alta, and the distinction between processes

is critical for accounting resource consumption and release.

Given that processes are separated, the system must provide a facility for

interprocess communication (IPC). Alta uses the IPC semantics specified by Fluke.

Thus, while each process is presented with the illusion of running in its own Java

virtual machine, facilities for discovering and communicating with other processes

in the machine are available.

3.2.2 Alta typespaces

Alta extends the nested process model to encompass Java’s classes. Classes

are Java objects that define the object layout and object methods available in a

typespace. Control over the typespace of a process provides the ultimate control

over that process and enables parent processes to exercise precise control over

resource accesses and to effectively “download” resource management into a child

process.

A class is defined by a set of class files. The class file format, defined in the

Java Virtual Machine specification [32], specifies the external representation of a

class.1 This format allows classes to be stored and transferred between Java virtual

machines. A class file symbolically specifies a superclass, fields, and methods. Class

files can be dynamically loaded into the system, which extends the set of classes

at run-time. When a class file is loaded, the virtual machine resolves the symbolic

references to other class files, performs a series of link-time checks to make sure

that the resulting class obeys safety constraints, and creates a java.lang.Class

object representing the new class [32]. Resolution of a symbolic reference can cause

1Technically, the class file format specifies either a Java class or a Java interface. I will refer
to them both as “class files.”
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additional class files to be loaded. The JVM specification defines which names are

resolved and when during the loading, linking and execution phases of a class. Note

that a class file is not required to be an actual file, it is just a sequence of bytes.

3.2.2.1 Class name resolution in Alta

In Java, the default mechanism for resolving a symbolic name into the appro-

priate class file is to convert the symbolic name to a file-system-friendly format

and look for it on the local file system. For example the name java.util.Vector

is transformed to java/util/Vector.class, which should be found on the local

file system. The JVM specification describes an extension mechanism for Java

applications to resolve names by subclassing java.lang.ClassLoader. Resolution

of a name can be delegated to another class loader (usually the system class

loader) [31]. Once resolution of a name is delegated, all names referenced from

that class file are implicitly delegated, also. This implicit delegation preserves

the consistency of the typespace. For example, given the partial definition of the

class C in Figure 3.2, once a classloader delegates resolution of the name “C,” the

classloader passes up the opportunity to resolve any name referenced by the class

file. In this example, by delegating resolution of the name “C”, the name “Related”

will also be implicitly delegated.

Alta adds a new level of context—the process—to the type system. Within

a process the type rules are unchanged from a traditional Java virtual machine.

The type rules between processes, needed for interprocess sharing, are discussed in

class C

{

public Related r;

}

Figure 3.2. A simple class C that contains a reference to the class Related. In
a traditional JVM, delegation of the resolution of the name C would implicitly
delegate resolution of the name Related. In Alta this is not so.
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Section 3.2.3.

In Alta, when a process attempts to resolve an unresolved symbolic name, it

performs an IPC to its parent process and the parent can reply with any class

file to which it has access. Regardless of where the parent acquired the class file,

that parent will also be responsible for resolving every name referenced by the

class file. For example, in response to a request for the class file to bind to the

name “java.io.FileInputStream” a parent could respond with the class bound to

the name “java.io.FileInputStream” in its typespace or, perhaps, with the class

bound to “edu.utah.npm.stubs.NoFileAccess.” (For convenience, the parent may

reply with a class object, the virtual machine then uses the appropriate class file

information in the child.) In either case, all unbound names referenced by the

given class file will also have to be resolved. With this mechanism, a parent process

has complete control over the nonsystem classes in a child typespace. Implicitly,

supporting this level of control requires that the name associated with a class file be

per-process and independent of the class file. Substituting class files under different

names requires no new link-time safety checks as current virtual machines must

already perform all of the necessary link-time safety checks to prevent version skew

problems. Modifications to the run-time type checks are discussed in Section 3.2.3.

To preserve the integrity of the virtual machine, critical system classes are loaded

into each process and bound to their “correct” names by the virtual machine before

any process begins execution. Preloaded classes are fixed in the class namespace of

a process. There are two kinds of critical classes in Alta. The first set of critical

classes is those that define the “kernel” of Alta—all the classes in the edu.utah.-

npm.core.* package, defined in Appendix A. The second set of preloaded classes is

the relatively small number of classes that are entwined with the operations of the

virtual machine. Table 3.1 lists those classes. Critical classes must be preloaded to

prevent a parent and child process from colluding to break the kernel. Additionally,

to protect package-private interfaces in the kernel, the virtual machine must prevent

other classes from being loaded into the edu.utah.npm.core package.
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Table 3.1. The set of critical classes preloaded into each Alta process.

Class Justification

Primitives All of the primitive types and arrays of primi-
tive types are predefined in each process.

java.lang.Object The common superclass of all objects in a JVM.
java.lang.String String is used in a number of critical places.

For example, a String object represents the
class name in class name resolution requests.

java.lang.Class Class is used in the process of resolving class
names through IPC, so it cannot be dynami-
cally loaded.

java.lang.System System is used during process initialization.
java.lang.Throwable The JVM understands the layout Throwable

as it must fill in and print stack backtraces.
java.lang.Error The JVM generates Error objects internally.
java.lang.Thread The JVM understands the layout of Thread

objects.
java.lang.Runnable Thread requires Runnable.
java.lang.ThreadGroup The JVM creates the ThreadGroups.
java.lang.Cloneable Cloneable is used by the native clone opera-

tion.

java.util.Vector Required by ThreadGroup

java.util.Hashtable Required by String

java.util.Dictionary Required by Hashtable

java.util.HashtableBucket Required by Hashtable

java.io.NI FileDescriptor NI FileDescriptor encapsulates an actual file
descriptor and is therefore a trusted class.

edu.utah.npm.core.* See Appendix A
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3.2.2.2 Native methods

One complication related to allowing a parent process to control class loading

is controlling access to native methods. Native methods are declared in a Java

class file but are implemented in C. Access to native methods must be controlled

because their code is not under the control of a parent process—native methods

can potentially violate the nesting hierarchy. Many native methods, however,

pose no problem. For example, the native array copy method, which copies the

contents of one array into another, provides no special privileges to the caller. In

contrast, a native method such as java.lang.System.exit(), which causes the

virtual machine to terminate, implies a great deal of privilege.

As an example, the critical class java.lang.Class contains the static native

method findSystemClass, which takes a String as a parameter and returns a

Class object. This method is not implemented in Java, but in C; the virtual

machine invokes the C function java lang Class findSystemClass() when Java

code invokes java.lang.Class.findSystemClass(). The simple name transfor-

mation that converts a Java native method name into a C function name implies

that Alta applications only need to generate a class with an appropriate name to

call into native code. Fundamentally, the problem of controlling access to native

methods stems from the assumption in the virtual machine that the binding from

a name to a class is static. The C code is written for a particular class with a

particular name.

Native methods are a useful point for a parent process to interpose on a child.

For example, interposing on the exit method and replacing it with a method that

uses IPC allows a parent to transform the JVM termination function to a process

termination function. In Alta, native methods are semantically grouped and defined

separately from the classes that use them. This grouping simplifies interposition

for a parent process because all of the relevant methods, and only the relevant

methods, are grouped together in a single class. Since these methods are all

native methods they are denoted with an “NI” in their name (for “Native Inter-

face”). Specifically, when a parent wants to interpose on the exit method, the na-
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tive interface java.lang.NI Exit.exit() is interposed on. In Alta, java.lang.-

NI Exit is a simple class that contains only an exit method. The default java.-

lang.System.exit() implementation calls out to java.lang.NI Exit.exit(). If

java.lang.System.exit() did not invoke java.lang.NI Exit.exit(), but in-

stead was a native method itself, then to interpose on this function would require

a parent process to re-implement the whole java.lang.System class.

The complication introduced by native methods is best illustrated by an exam-

ple. Consider a parent process ProcA. In order to contain its child processes,

ProcA replaces the java.lang.NI Exit class with a class that terminates the

calling process and not the entire virtual machine; however, if a child of ProcA

creates its own child, ProcC, and maps java.lang.NI Exit in ProcC to a custom

class containing a native method exit(), then when ProcC executes java.lang.-

NI Exit.exit() it will invoke the native method that shuts down the whole virtual

machine, circumventing the controls placed by its ancestor, ProcA. This exploit is

only possible if the virtual machine does not make a distinction between the class

bound to NI Exit in ProcC and the class bound to NI Exit in ProcA. In Alta, the

critical distinction the virtual machine makes is based on the origin of the class files.

The class file in ProcA was (assuming it should have access to the native method)

loaded by the kernel from the local file system, whereas the class file in ProcC

was created in the standard Java fashion for creating dynamic classes—calling

Classloader.defineClass(). The assumption is that classes loaded by the kernel

are more trusted than arbitrary classes, and a parent process can control a child’s

access to classes loaded by the kernel. So, in this example, ProcC would be unable

to execute the native method associated with java.lang.NI Exit.exit(), because

ProcA denied its child processes access to the trusted class that does have access

to the native method. Alta effectively binds native methods to only the trusted

class that the native method was written to work with; no other class, whatever its

name, may call that native method.

Table 3.2 lists all of the core Java classes containing native methods in Alta. All

other classes in the java.lang, java.io, and java.util packages are implemented
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Table 3.2. The set of native interface classes defined for Alta’s core Java libraries.

Native Interface Description

java.lang:
NI ClassLoader Contains the native methods used by a java.lang.-

Classloader: defineClass(), resolveClass(), and
findSystemClass(). The first two are safe while
findSystemClass() is intercepted by the kernel and
transformed into an IPC.

NI Exit The exit() method, which is invoked only by java.-

lang.System.exit().
NI GC Functions to invoke the garbage collector, invoke the

finalizer, and query for the amount of memory.
NI Library Functions for dynamically linking native libraries.
NI Process Functions for manipulating traditional, external pro-

cesses; only used by java.lang.Runtime.exec().
NI SecurityManager A function for querying the current thread’s stack.

Only used by the security manager.
NI SystemProperties Functions for retrieving basic properties of the system;

only used to initialize java.lang.System.
NI Time The function currentTimeMillis().

java.io:
NI FileDescriptor The basic object used to represent a file in Java. A

critical class preloaded into every process.
NI FileIO Functions that perform basic file I/O operations on a

NI FileDescriptor (e.g., read or write).
NI FileSystem Functions that perform file system operations. For

example, open() or isDirectory().

java.net:
NI Host Functions that provide information about the local

host.
NI NetIO Functions providing network operations on a java.-

io.NI FileDescriptor.

java.util:
NI TimeZone Functions that define the current timezone.
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in terms of these “NI” classes. The grouping of native methods into classes is

designed to make interposition more flexible (see Section 3.2.6).

3.2.2.3 Code control

Because class objects in Java define both object layout and the object methods,

control over a child’s process classes means the parent process can exercise control

over what code is available in a child process, and with careful use of the language-

level protection mechanisms, can “download” code into a child. The replacement

of java.lang.NI Exit in the previous section is one example.

3.2.3 Interprocess sharing

Despite the separate typespaces for each process and the extent to which a child

typespace can differ from a parent’s typespace, Alta still allows a limited amount

of direct object sharing between two processes. Shared objects can be accessed

directly in either process without indirection or other overhead. Initially, processes

in Alta contain no visible shared objects;2 the first visible shared object must be

passed through IPC. Subsequent objects can be shared through the first object, or

passed through IPC.

Safe sharing is possible because the virtual machine has complete information

about the typespaces of any two processes that wish to communicate, and the

virtual machine can mediate the initial communication between any two typespaces.

The Alta virtual machine uses this information to guarantee that a shared object has

equivalent class in both typespaces. Additionally, since a shared object effectively

opens a communication channel between two processes, Alta must ensure that

all potential objects that might be communicated through a shared object are

also safe. Classes that pass these two tests—class equivalence and safe potential

sharing—define the set of objects one process may share with another.

2There are many shared objects hidden within the kernel code.
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3.2.3.1 Type equivalence in Alta

If an object were to be shared between two typespaces with inconsistent classes,

the integrity of the virtual machine would be lost. For example, given the classes

BasicClass, KeyClassSafe, and KeyClassUnsafe in Figure 3.3, consider two type-

spaces that resolve the name “BasicClass” to the same class file, BasicClass, but

resolve the name “KeyClass” to KeyClassSafe and KeyClassUnsafe respectively.

If an instance of BasicClass is shared between the two typespaces, then the key

field would be treated differently in the two typespaces. The integer field of Key-

ClassUnsafe would be used in place of the object reference field in KeyClassSafe,

which would allow forged pointers. The example demonstrates that the class of an

object is not completely defined by the class file most closely associated with that

object, specifically, the class of an instance of BasicClass is not fully described by

the BasicClass class file.

Note that the inconsistency described in this example can never arise within

class BasicClass

{

public KeyClass key;

public String name;

}

final class KeyClassSafe

{

private Object magicObject;

}

final class KeyClassUnsafe

{

public int spoofMagic;

}

Figure 3.3. The simple classes BasicClass, KeyClassSafe, and KeyClassUnsafe.
The class BasicClass is dependent on the resolution of the name KeyClass. To
share an instance of BasicClass requires that the involved typespaces all resolve
KeyClass and String to the same class files.
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a single process (or a traditional JVM) because each name in a class file—in this

example, the name “KeyClass”—is resolved only once. In Alta, however, the names

referenced by a class file may be resolved differently in different processes.

To determine if an object can be shared between two processes, the virtual

machine must determine if the set of class files that define the class of that object

are equivalent in both processes. A class is defined by more than just a simple class

file; a class is defined by the class of each field, the classes referenced in method

signatures, the class of the superclass, and all of the implemented interface types.

A class file only describes how a class is constructed by listing the names of the

class file describing each of the relevant parts. Thus, two classes are equivalent if

and only if all of the class files used to describe all of the parts of the class are

equivalent.

A single class file can be defined as equivalent between two processes if it is

derived from a single class file in a common ancestor process. More formally,

identify a single class file as the pair 〈N,P 〉, where P is the process in which

N is the name of the class file, and define the notation 〈Nc, C〉 ⇐
imm

〈Np, P 〉3 as: the

class file 〈Nc, C〉 was resolved by the immediate parent of process C, process P ,

responding to the name Nc with the class file bound to Np. A child process’s class

file, 〈Nc, C〉, and the parent process’s class file, 〈Np, P 〉, from which it was derived

are equivalent class files. More formally, this relation can be expressed as:

〈Nc, Child〉 = 〈Np, Parent〉 if 〈Nc, Child〉 ⇐
imm

〈Np, Parent〉.

This relation simply states that if a parent process replies to a child process’s name

request with a given class file then the class file is the same in the parent and child,

regardless of the names they give it. Because this relation between parent and child

process class files is an equivalence relation, it is reflexive, transitive and symmetric.

The transitive closure of the relation defines a relationship ⇐, where

〈Nc, Child〉⇐〈Np, Ancestor〉 if 〈Nc, Child〉 = 〈Np, Ancestor〉.

3“⇐” could be pronounced “derived from.”
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Thus, for two distinct processes Pa and Pb the class files named Na and Nb in

respective processes are equivalent if they share a common ancestor class file. The

resulting class file equality relation, = can be expressed as:

〈Na, Pa〉 = 〈Nb, Pb〉 if (〈Na, Pa〉⇐〈N ′, P ′〉 and 〈Nb, Pb〉⇐〈N ′, P ′〉).

There are two aspects of Java which complicate this analysis: classloaders and

interfaces. Classloaders were described in Section 3.2.2.1. Incorporating classload-

ers into the definition of a class file requires that the notion of a class name be

extended. That is, a class file is actually identified, within a process, by the pair of

name and classloader. Other than complicating the definition of a class name, this

should have no impact on the definition of a class or on class equality. Interfaces

are effectively abstract classes containing only abstract methods. Interfaces are

treated as regular class file objects, and add no actual complications to the Alta

type system.

Given this definition of class file equality, the class equivalence test in Alta

is a simple recursive algorithm. Given an object to be passed through IPC, Alta

determines the class of the object. Given the class in the source process’s typespace,

there must be an equivalent class in the destination typespace.4 Starting with

the basic class file, each referenced class file must also be equivalent in the two

typespaces. This test determines if two classes are equivalent in disjoint typespaces.

Referenced class names are followed until a base shareable class is encountered.

Base shareable classes include primitive types—which are by definition equivalent

in all processes—plus a select subset of the preloaded classes. See Table 3.3 for a

complete list of the base shareable classes. Each of the base shareable classes is

asserted to be safe.

4Alta currently does not handle loading a class when the first reference to it is from an object
passed through IPC. Currently, if any required classes are unavailable in the target typespace,
the object is not passed. Similar to page-faults during IPC in a traditional kernel, handling such
a fault in Alta would require the kernel to generate a class-fault exception to the parent process.
This, in turn, would require a thread to have two outstanding IPC operations at one time, which,
in turn, requires Alta to support idempotent IPC operations, which it does not at this time.
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Table 3.3. The base shareable classes.

Class Justification

Primitives All of the primitive types are, by definition,
equivalent in all processes. (The primitive
types are boolean, byte, char, int, long,
float, and double.)

java.lang.String A final class which is preloaded into all pro-
cesses. Only contains references to char[]

and int.
java.io.NI FileDescriptor A final class which is preloaded into all

processes. Only references primitive types.
edu.utah.npm.core.Cond A final class which is preloaded into all

processes. Only references classes in the
edu.utah.npm.core package.

edu.utah.npm.core.Mutex A final class which is preloaded into all
processes. Only references classes in the
edu.utah.npm.core package.

edu.utah.npm.core.PortSet A final class which is preloaded into all
processes. Only references classes in the
edu.utah.npm.core package.

edu.utah.npm.core.ClassHandle A final class which is preloaded into all
processes.

Arrays of shareable classes Arrays of any shareable class are also
shareable. For example, arrays of bytes,
or arrays of Strings are shareable.
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For example, if an instance of the class BasicClass (see Figure 3.3 from the

beginning of this section) is passed through IPC, Alta finds the class that defines

BasicClass in each process. The BasicClass class file references three other

classes, java.lang.Object (the implicit superclass), KeyClass and java.lang.-

String. The base shareable classes, Object and String, are always equivalent

in all processes, leaving KeyClass. The class file bound to the name KeyClass is

looked up in each process. Next, assuming that class file is equivalent, all of the

classes referenced in KeyClass are checked for equivalence.

Alta currently implements an even more restrictive subset of this algorithm.

Alta only allows objects that are instances of base shareable classes or are instances

of classes whose fields are all base shareable classes. This is all that has been

necessary in practice, so far. If necessary, generalizing the implemented algorithm

to the specified one should be straightforward. The only difficulty will be handling

and tracking circular class file references in a class definition.

By separating the name of a class from its definition, Java’s classes behave

similarly to mixins. A mixin is an abstract subclass—a subclass whose superclass

is not fixed [10]. The mixin may be applied to any appropriate superclass. This is

similar behavior to a Java class in that the binding of the superclass to a class is

done at run-time. In Java class flies, however, the name of the superclass is fixed

in the class. In contrast with mixins, in Alta every name specified in a class file,

e.g., the field types and in the method signatures, is bound at run-time.

3.2.3.2 Safe potential sharing

Simply having equivalent classes in two typespaces is insufficient for Alta to

allow sharing. Because shared objects open up an unregulated communication chan-

nel between processes, Alta must ensure that arbitrary objects cannot be shared.

For example, consider an object, X with a field “ref” of type java.lang.Object.

If X is shared between two processes, then those processes may pass objects of any

type through X by reading and writing from the “ref” field. Such arbitrary types

may not be available or compatible in both typespaces, leading to corruption of the

virtual machine. Even if all classes in the two typespaces are completely equivalent,
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in the face of dynamically loaded classes the virtual machine cannot predict if the

typespaces will become inconsistent in the future.

The only object fields that the virtual machine can guarantee are safe are those

that are not polymorphic or interfaces. For example, a field of class java.lang.-

String is allowable because the class is final—subclasses of java.lang.String

are not allowed.5 For non-final classes, the virtual machine cannot know what

classes might be shared by as-yet-unknown subclasses. Therefore, the virtual

machine cannot allow shared objects to contain fields of polymorphic classes (or

interfaces). Note that references passed through IPC do not need to be instances

of a final class because the virtual machine is dealing with a specific instance of

the class.

It should be noted that the class edu.utah.npm.core.ClassHandle, a member

of the base shareable classes, violates this rule. The class contains a field of class

java.lang.Class, which is not a safe class. The implementation of edu.utah.-

npm.core.ClassHandle, however, is trusted and never allows the shared Class

field to be visible in more than one process. This sort of analysis—gauging the

visibility and safety of potentially unsafe fields—is only viable with trusted classes.

One more limit is placed on classes to allow them to be shareable: the classes

must not contain static variables. This restriction allows the JIT compiler to inline

static variable addresses. Because a shared object contains a method dispatch

table pointer (also known as a vtable) the JIT code is shared with the object.

To guarantee that this code is consistent with what would be generated in both

processes, static variable references are disallowed. This is not a strict requirement.

Relaxing it would imply that the JIT compiler be modified to support indirect

access to static variables.

5Note that final is an overloaded term in Java: a final method is one that cannot be
overridden in a subclass, a final field is one whose value cannot be changed, and a final class
is one that cannot be subclassed.
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3.2.3.3 Side effects of Alta’s sharing model

One unusual side-effect of Alta’s shared object model is that each process has

its own Class object associated with each shared object. Thus locking an object’s

Class will not provide mutual exclusion across processes. This is important because

methods that are both static and synchronized are defined to lock the associated

Class object. This caveat, coupled with the restrictions imposed for safety, imply

that arbitrary Java objects cannot be indiscriminately shared between processes.

No existing Java class, however, is written to be executed in two different processes,

so shared objects must be treated with some care in any event.

An additional side-effect of Alta’s type model is that the binding between a

class and its name is not fixed. This, combined with the fact that a single type can

have two names in an Alta process, means that serialization of objects in a manner

compatible to the JDK specification is difficult, as serialization depends heavily on

representing a type by its name.

Direct object sharing poses problems for memory management and resource

ownership. These problems are discussed in Section 3.2.5.

Despite these limitations and caveats, many objects are safely shared by the code

in Alta’s kernel. For example, cross-process capabilities are actually implemented

as direct object references. Additionally, the IPCIF protocols (described later

in Section 3.2.6) are able to pass many parameters as shared objects instead of

marshaling their parameters into a byte buffer, copying the buffer and unmarshaling

the parameters.

3.2.4 Core API implementation

The Alta core API (see Appendix A) provides the most basic set of services to

Java applications. Its implementation is equivalent in many ways to the implemen-

tation of a traditional kernel. The Alta kernel multiplexes the underlying system to

multiple processes. Just as in a traditional system, the kernel in Alta must protect

itself from errant and malicious applications. The Alta kernel is fully preemptive.
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3.2.4.1 Memory management in Alta

The majority of the nested process model core API is simple to support in

Java since the kernel abstractions are entirely new to Java (e.g., ports, references,

and processes) or easily match existing Java abstractions (e.g., threads). The only

objects that are significantly difficult to provide in Java are the memory mapping

objects.

In Fluke, the nested process model core API defines regions and mappings for

mapping memory addresses from one process into another. Java has no language-

level notion of memory addresses, and introducing such a notion merely to support

these abstractions is unproductive. The IPC-based API in Fluke, however, defines

a memory pool object that represents a much more abstract chunk of memory—

effectively, just a size in bytes. In Alta, this higher level abstraction, the MemPool,

is used to manage memory. When a new process is created, the parent process

can create a MemPool to associate with that process. The memory pool is given

an amount of memory, allocated from the current memory pool. When the process

runs out of memory the process will make an IPC to the parent to invoke the

garbage collector or request more memory.

While mempools are created and given a size by user-level processes, the details

of the mempool are managed by the virtual machine; individual credits, debits,

and availability checks are made by the virtual machine. Currently, Alta supports

only a one-to-one mapping between processes and mempools. Supporting many-

to-one and one-to-many relationships should be possible, but there is currently no

motivation for such support. A future version of Alta, however, could support

different types of memory, for example “wired” and “pageable” memory, and this

distinction could be presented to applications through different mempools.

3.2.4.2 Maintaining kernel integrity

To maintain the integrity of the kernel’s data structures in the face of arbitrary

user code and user contexts, three basic issues must be confronted. All three involve

unanticipated exceptions being thrown while a thread is executing kernel code. The

kernel maintains a number of shared data structures that must be protected from
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inconsistencies that could be introduced if a thread were stopped in the middle of

a kernel critical section.

First, the kernel must protect itself from java.lang.Thread.destroy() and

from asynchronous exceptions thrown via java.lang.Thread.stop(). Thread.-

destroy() is a method on a thread object which stops the target thread dead

in its tracks; Thread.stop() stops the target thread and throws an exception in

that thread’s context. The kernel protects itself by postponing stops and other

interruptions when a thread enters the kernel. Postponed interrupts and stops are

“posted” when the target thread exits the kernel. Traditional kernels use a similar

tactic, only delivering signals to processes while they are executing in user mode [33,

p. 97]. In Alta, the transition from “user mode” to “kernel mode” is explicit in

the code by use of the kernel-private methods Thread.startSystemCode() and

Thread.endSystemCode().

The second issue facing the Alta kernel is running out of stack space during

execution. This poses the same problems as interruption, but stack overflows cannot

simply be “postponed.” Upon entry to system methods, the available stack space is

checked against a predefined limit, analogous to traditional, hardware-based kernels

that run kernel code on a separate stack of fixed size that is “known” to be sufficient

(usually 4k or 8k bytes). The stack size check is not yet implemented in Alta.

The final and most complicated issue the core Alta code must deal with is

running out of memory while executing kernel code. Like stack overflows, out of

memory conditions cannot be “postponed.” Unlike entry-time stack checks, a check

for sufficient memory at kernel entry time is insufficient as other threads in the

system may use the memory before the in-kernel thread needs it. Alta approaches

this problem by pushing as much memory allocation out of the kernel as possible.

In fact there is no explicit object allocation in the Java portion of the Alta kernel.

All of the system calls operate on state provided exclusively by user mode code. In

addition to avoiding out of memory conditions within the kernel, this increases the

precision of Alta’s resource accounting. For example, when objects such as a port or

thread are created by an application, all of the required kernel state is allocated and
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initialized—in user-space. In a traditional hardware-based system, kernel state and

application state are usually quite separate. For example, a file descriptor in Unix is

user-mode state associated with some separately allocated kernel state. Traditional

kernels cannot allow the user to allocate kernel data structures. Alta, on the other

hand, can take advantage of the fine-grained access control provided by Java’s

type system to attach private kernel state to application-visible objects. Figure 3.4

shows how the edu.utah.npm.core.Space object, which an application creates

when starting a new process, creates the associated kernel state at the same time.

The vast majority of the operations on the kernel objects (listed in Figure 2.1) never

make allocations; they operate entirely on existing objects. For those methods that

do require temporary objects, the objects can be allocated by the method before

entering kernel mode. Figure 3.5 shows a fragment of the Reference.check()

method which checks the integrity of a Reference object. This method creates

a temporary Link object (for a copy of the Reference-internal Link object that

represents the actual object reference). Because the entry to kernel mode is explicit

public final class Space

{

// A kernel-internal cross-process reference

private final Link keeperPortLink = new Link();

// For the queue of threads active in this process

private Thread s_threadQHead_ = null;

private Thread s_threadQTail_ = null;

// An internal rendezvous object for threads

// in this process

final Object stopCond_ = new Object();

// ...

}

Figure 3.4. A fragment of the edu.utah.npm.core.Space class implementation
showing what kernel state is allocated and initialized when the object is created.
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// In the Reference object

public boolean check()

{

Refable obj = null;

boolean isActive = false;

final Link linkCopy;

linkCopy = new Link(); // allocate outside

// kernel-mode

Thread.startSystemCode(); // Enter kernel-mode

// do the actual check

...

Thread.endSystemCode(); // Exit kernel-mode

}

Figure 3.5. The check() method of edu.utah.npm.core.Reference performs
memory allocations before entering system code. This separation is possible because
a type-safe language based operating system can safely decouple kernel entry from
entry to kernel mode.

in Alta (through Thread.startSystemCode()), the temporary object allocation

can be done inside the kernel but outside kernel mode. Thus if the allocation of

the temporary object fails, a standard OutOfMemoryError will be thrown without

disrupting the kernel.

There are still areas of Alta’s kernel that can trigger out of memory exceptions.

First, verification and JIT compilation of kernel methods cause the virtual machine

to allocate memory. These allocations could be avoided by preverifying and pre-

compiling all of the kernel methods when a process is created. Second, the virtual

machine dynamically allocates monitor locks as they are required. Since the kernel

itself uses very few monitor locks, those that are used could be preallocated for

the required kernel objects. These changes would make Alta’s kernel completely

allocation-free and would eliminate a whole class of errors and race conditions



37

related to memory allocation in the kernel.

3.2.5 Core resource controls

Processes in Alta are subject to comprehensive memory controls enforced by

the virtual machine. Every allocation made by a thread is charged to the memory

pool associated with that thread’s Space. This accounting includes buffers to hold

compiled bytecode, the per-space typespace map, every Java object allocated by

a thread, etc. Every object in Alta has an owning MemPool associated with it.

The MemPool is credited when the garbage collector returns an unreachable object

back to into the pool of available memory. The garbage collector introduces a

delay between releasing an object and reclaiming the memory used by the object.

Type-safety constrains the system to never allow dangling pointers. Together these

two factors constrain the system’s ability to terminate a process and reclaim all of

its memory: to completely reclaim all of a process’s memory, none of the objects in

that process can be reachable and the garbage collector must be invoked to reclaim

the memory.

3.2.5.1 Memory accounting and shared objects

Resource accounting and control are complicated by the sharing of objects [29].

In traditional hardware-based systems, a page of memory can simply be revoked by

the operating system: any processes that try to access that memory will fail. For

example, if a process is killed by the system, all of its pages can be unmapped and

reused. In a type-safe system, an object cannot simply be unmapped and reused

if there are existing references, as the existing references would invite type-safety

violations. In a hardware-based system, revocation can lead to the corruption of

a single process, but in a language-based system type-safety violations can lead to

the corruption of the entire system.

Given a process, A, that “owns” objects that are shared with another process,

termination of the process A will not result in the reclamation of all of its memory

as the other process will effectively keep that memory reachable. Alta allows object

sharing because the hierarchy of the nested process model can be used to contain
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sharing in a natural and efficient manner. A processes in Alta can tightly contain

its child processes or let them communicate efficiently via shared objects. In this

way, the application can trade the ability to cleanly terminate a child process for

more efficient communication with that process.

Figure 3.6 diagrams the three different types of interprocess sharing that can

occur in the nested process model. In Figure 3.6(A), a parent process allocated

an object and the child process has a reference to that object. In terms of process

termination, this sort of sharing is harmless. If the parent terminates the child, all

objects are reclaimed. If the parent is terminated, the child is necessarily terminated

also. Additionally, this sharing paradigm is very useful: it is the standard server

model, where the lifetime and usefulness of a server object depends on the lifetime

of a client’s references to that object. Of course, in this case, the server has lost the

ability to reclaim the object unless it can convince the child to drop its reference

or the child is terminated.

Figure 3.6(B) presents the case of a parent holding a reference to an object

in a child process. Again, in terms of termination, this sort of sharing presents

no significant problem. If the parent process terminates the child, the object is

simply promoted to the parent—the parent effectively owns the whole child to begin

with. Again, in this scenario, if the parent is terminated, the child is necessarily

terminated also. This sharing format is, again, useful: a child could, for example,

pass a reference to a local buffer to a parent server, which would be able to fill the

buffer directly without copying.

Finally, Figure 3.6(C) diagrams sibling processes sharing an object. Communi-

cation with a sibling process requires the cooperation of the parent as it is the first

common communication endpoint. In terms of termination, by allowing two sibling

processes to share objects directly, a parent process has linked the clean termination

of those processes; in order for the parent to terminate one child process and reclaim

all of its memory, the parent must necessarily terminate the other child process,

too. In Alta the allocator of an object is charged. This tradeoff of clean termination

versus fast communication is left to the discretion of processes in the system. Alta
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(B)

Java reference

Java object

(A)

Child process

Parent process

(C)

Figure 3.6. The three different modes of interprocess sharing in the nested process
model. (A) represents a child holding a reference to an object allocated by its
parent. (B) represents a parent holding a reference to an object in its child and (C)
represents a process holding a reference to an object in a sibling.
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provides sufficient infrastructure for any process to implement these policies over

the processes it is managing.

3.2.6 IPC-based interfaces

The Alta IPC-based interfaces, or IPCIF (see Appendix B), provide applications

running on Alta with an interface to higher-level services than provided by the

kernel. Except for the Parent interface (Section B.1), the IPCIF API relies on

the kernel only for the communication mechanism; the protocols are otherwise

independent of the kernel.

In Fluke, the IPC-based interfaces support the posix orientation of the standard

libraries Fluke applications are linked against. In Alta, however, the IPCIF are

designed to support the Java standard libraries and are based around the native

interfaces upon which those libraries depend (see Table 3.2). Despite the different

focus, the interfaces are quite similar. Both systems have interfaces for accessing the

file system—for example, opening a file or deleting a file—an interface for reading

and writing individual files, and a memory management interface for requesting and

returning large blocks of memory. Alta has an interface for memory related oper-

ations such as invoking the garbage collector and querying the amount of memory

available. In both Alta and Fluke the Parent interface is the only interface to which

a child process initially has access. This interface serves as the most basic name

service, providing access to other interfaces. While the Parent interface is directly

supported by the kernel (the Alta kernel invokes class name resolution requests on

the parent interface directly), the other interfaces are completely independent of the

kernel. This separation means that IPC-based interfaces can be tailored for specific

environments or to support new server interfaces without changing the kernel.

Alta does not support the Abstract Window Toolkit (AWT) libraries at this

time because the Kore library—the standard Java library implementation Alta

uses—does not have working AWT support. Unlike the other IPCIF interfaces, the

division into “server” and “client” components for the AWT has no analogue in

Fluke. The best example of an IPC-based GUI is the X windowing system, so an

AWT interface on IPCIF should be straightforward. The Kore library is described
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later, in Section 4.1.1.2.

3.2.7 Exportable state

One of the basic tenets of Fluke is that all state of all objects is extractable at

all times [21, 46]. Actually, in Fluke, much of the associated kernel state is not

exported when a kernel object is extracted. All that is needed to “extract” an

object is enough information to correctly recreate the object later. Additionally,

for many of the core kernel objects in Fluke, state is only extracted when the

object is not in the “middle” of an operation. For example, the state of a thread

object is extractable only if the thread is not executing any kernel functions. If

the thread happens to be executing a kernel function when its state is extracted,

the kernel functions are canceled and undone, and then the state of the thread is

extracted [21].

While wholesale state extraction is useful for writing a comprehensive check-

pointer that can take a “snapshot” of a set of related processes [46], and for

writing a virtual memory nester that can write a process’s kernel state out of core,

state extraction is not useful for resource control and process management. It is

important to note that services such as virtual memory and checkpointing are not

impossible in Alta, but they must be implemented within the virtual machine.

The largest stumbling block to implementing state extraction in Alta would be

the safe restoration of an exported thread’s stack. A representation of a thread

stack would have to be developed as well as a mechanism for verifying that each

frame on the externalized stack matched the requirements of the associated method.

Given that an externalized stack could be manipulated, the ability to “download”

code into a child process would be jeopardized as a process could invoke trusted

code, stop the thread, extract the thread’s stack, manipulate the stack to a new

state, and restore the thread, thus bypassing whatever checks may exists in the

trusted code. Together these restrictions on complete state extraction outweighed

the benefits and Alta was not designed to include state extraction.



42

3.3 Conclusion

Starting with the nested process model, as implemented in Fluke, Alta was

created by mapping the model into a Java virtual machine. Alta gives each process

the impression of running on its own Java virtual machine, yet still allows processes

to directly share many types of objects. A process in Alta may control the types

visible in child processes, and may maintain resource limits on those child processes.

Finally, Alta uses a number of standard operating system techniques for maintaining

control over user processes.



CHAPTER 4

IMPLEMENTATION AND ANALYSIS

OF ALTA

This chapter demonstrates some simple examples of using Alta, presents a

quantitative analysis of Alta’s implementation in terms of performance and relative

size, and finally compares Alta and Fluke.

4.1 Implementation

4.1.1 Infrastructure

The Alta virtual machine supports the basic features required of a Java virtual

machine such as garbage collection, threading, JIT compilation, bytecode interpre-

tation, verification, and all of the features of the core Java libraries. The majority

of these features were implemented by the software Alta is built upon: the Kaffe

virtual machine and the Kore standard libraries.

4.1.1.1 Kaffe

The Alta virtual machine is based on Kaffe [51], a freely available virtual

machine developed by Tim Wilkinson. Alta is based on Kaffe version 0.9.2, which

supports most of the features of JDK 1.0.2 and used Sun’s JDK 1.1.3 class libraries.

For Alta, a large number of features introduced into later versions of Kaffe–such

as an improved threading infrastructure and a new garbage collector—were ported

back to Alta.

4.1.1.2 Kore

The core Java libraries for Alta are based on the implementation provided by the

Kore project [13]. Kore is a clean-room implementation of the Java core libraries
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and is compatible with JDK 1.0. Kore provides a very clean and minimal interface

between the Java libraries and the native code they depend upon.

4.1.2 Implementation Statistics

The Alta implementation is reasonably small, both in terms of the changes made

to the virtual machine (several thousand lines of code) and the runtime support

code (several hundred lines of code).

The implementation of Alta is easily broken into two pieces—a Java component

and a C component. The Java component consists of the core Alta libraries, which

implement the basic NPM primitive objects. Also in the Java component are the

IPCIF libraries that provide the high-level services on top of IPC. The core library

is approximately three thousand lines of code (three kloc), while the IPCIF library

is less than two kloc.1 As a point of reference, the Kore library, which provides

standard Java libraries compatible with JDK 1.0.2 but without AWT support, is

about four kloc, while the JDK 1.1.7-compliant standard Java libraries for Kaffe

v1.0b2 without including AWT support is just under nine kloc.

The Kaffe virtual machine (version 0.9.2, on which Alta is built) contains

approximately ten kloc of C source, while the Alta virtual machine weighs in at

thirteen kloc of C source. Probably one-half of that increase is code that fixes

bugs, adds significant debugging infrastructure or supports new features from later

versions of Kaffe. For example, a new threading infrastructure was incorporated

into Alta from a later version of Kaffe. Additionally, Alta, unlike Kaffe, provides

native methods for the Kore libraries.

In terms of binary size, on FreeBSD 2.2.6 the Alta virtual machine binary is

approximately 350K statically linked or 230K if the standard FreeBSD libraries are

dynamically linked. A Kaffe version 0.9.2 binary is 350K statically linked or 200K

dynamically linked. The 29 core Alta class files, i.e., the edu.utah.npm.core.*

package, use 53K of disk space, the 28 IPCIF class files use 55K, while the Kore

1A “line of code” is a nonblank, noncomment, line of program source that contains more than
just punctuation or preprocessor directives. For all of the listed packages this line of code count
is between 30% and 35% of the raw lines of text.



45

library’s 163 files use 183K. In comparison, the JDK 1.1.7-compliant standard Java

libraries for Kaffe v1.0b2 contains 532 class files and requires about 915K of disk

space and the Sun JDK 1.1.6 core runtime (all of the java.* packages) contains

721 class files that require 1.6 megabytes of disk space.

Overall, Alta and its libraries are moderately sized, and the changes made to

the virtual machine are not overwhelming.

4.1.3 Implementation Lessons

Java is a simpler and safer language than C. The Java compiler catches far more

errors than any C compiler. On the other hand, the high-level nature of many of

the basic Java abstractions occasionally hampers the system programmer. For

example, because java.lang.String objects are real Java objects, using them in

critical parts of the kernel (e.g., for debugging) can be troublesome. Specifically, the

class name resolution code that performs an IPC to a parent process cannot print a

String because the compilation of String methods may cause recursive entry into

the IPC class name resolution code. One other example of the lack of system-level

control while programming in Java is evident when allocating temporary objects. In

C, a struct local variable is allocated on the stack, but there is no such analogue in

Java: all Java objects are dynamically allocated on the heap. Stack allocations are

a fast and simple way of avoiding the overhead and errors associated with dynamic

memory allocation and such techniques can be critical in a kernel. In Alta, only

one allocation in the kernel needed to avoid the heap allocator. In C this site

would have used stack allocation; in Alta this need was addressed by dynamically

allocating the object in the context of the caller—avoiding the heap allocator in the

critical code. Just as C programmers can delve into assembly for truly low-level

control over a system, a Java systems programmer always has the option of using

C code for implementing constructs that are awkward or inefficient in Java.

4.2 Using Alta

Alta is invoked in the same manner as other Java virtual machines. The

only required argument to Alta is the name of the initial class to load. Optional
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arguments can be provided before the class name. Arguments given after the class

name are arguments to the main() method of the initial class. Class files are found

on the local file system via the CLASSPATH environment variable.

Here is the traditional “Hello World!” example for Alta:

% alta HelloWorld
Hello World!

Alta loads the class file HelloWorld.class and executes the static main()

method in HelloWorld which simply prints the string “Hello World!” to standard

output.

The next example demonstrates how to run HelloWorld as a subprocess of the

Alta sandbox. The Alta sandbox was described in section 1.1.

% alta edu.utah.npm.apps.sandbox.Main HelloWorld
Hello World!

In this example, “HelloWorld” is the name of the application the sandbox starts.

The sandbox is an Alta application that creates a child process and optionally

regulates the child’s access to classes, the file system, etc. In this example, the

sandbox only interposes on class name resolution but does not limit file system

access or memory usage.

As a more complex example, the following fragment is a trace of javac, the

Sun Java compiler, in a sandbox. The compiler compiles the Java source file

HelloWorld.java into the file HelloWorld.class.

% alta edu.utah.npm.apps.sandbox.Main \
sun.tools.javac.Main -verbose HelloWorld.java

[parsed HelloWorld.java in 314ms]
[loaded /lib/classes.zip(java/lang/Object.class) in 39ms]
[checking class HelloWorld]
[loaded /lib/classes.zip(java/lang/String.class) in 20ms]
[loaded /lib/classes.zip(java/lang/System.class) in 14ms]
[loaded /lib/classes.zip(java/io/PrintStream.class) in 10ms]
[wrote HelloWorld.class]
[done in 965ms]
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Note that the -verbose flag is passed to javac and causes javac to print out

the time required to perform various steps of the compilation. Again, the sandbox

nester is not interposing on any interfaces.

The next example demonstrates that the sandbox application can be nested,

creating a trivial hierarchy of nested processes. This is feasible because the sandbox

nester relies on the same interfaces that it exports.

% alta edu.utah.npm.apps.sandbox.Main \
edu.utah.npm.apps.sandbox.Main HelloWorld

HelloWorld!

The final example demonstrates the result of running the java compiler with a

restricted memory pool. The -memlimit argument to the Alta sandbox specifies

the size of the memory pool for the compiler. Because the limit given is less than

the working size of the compiler, it runs out of memory and is cleanly killed by the

sandbox.

Note that each time the child runs out of memory, it faults to the sandbox. The

sandbox never increases the size of the child’s mempool, it simply prints a message

and invokes the system-wide garbage collector. When the size of the child’s working

set exceeds the memory pool, the sandbox nester terminates the child.

% alta edu.utah.npm.apps.sandbox.Main -memlimit 2m \
sun.tools.javac.Main -verbose HelloWorld.java

[parsed HelloWorld.java in 316ms]
Child ran out of memory (short by 9496)
[loaded /lib/classes.zip(java/lang/Object.class) in 144ms]
Child ran out of memory (short by 12656)
[checking class HelloWorld]
[loaded /lib/classes.zip(java/lang/String.class) in 20ms]
Child ran out of memory (short by 1080)
Child ran out of memory (short by 152)
[loaded /lib/classes.zip(java/lang/System.class) in 118ms]
Child ran out of memory (short by 344)
Child ran out of memory (short by 168)
[loaded /lib/classes.zip(java/io/PrintStream.class) in 114ms]
Child ran out of memory (short by 1568)
Child ran out of memory (short by 9536)
Child ran out of memory (short by 152)
Child ran out of memory (short by 176)
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Child ran out of memory (short by 8744)
Child ran out of memory (short by 5416)
Child ran out of memory (short by 1432)
Child ran out of memory (short by 1432)
Working set exceeds memory limit. Child terminated.

4.3 Performance evaluation

I compare the performance of four different virtual machines: the Alta virtual

machine, two “stock” versions of Kaffe, and a Microsoft Java virtual machine.

The Alta virtual machine is based on Kaffe v0.92 but incorporates many of the

changes that brought Kaffe to v1.0b2, thus the Alta virtual machine lies somewhere

“between” these two stock Kaffe virtual machines. Alta uses the Kore class libraries

while Kaffe v0.92 uses Sun’s JDK 1.1.3 class libraries. Kaffe v1.0b2 uses its own

custom set of class libraries; as does the Microsoft virtual machine. Benchmarks

where the differences between the class libraries are likely to make a performance

impact are so noted. Table 4.1 shows each virtual machine, its libraries, and

approximate JDK version. Note that for the Kaffe and Kore libraries compliance

with the given JDK version is not complete.

All results reported in this chapter were obtained on a 300Mhz Intel Pentium

II CPU with 128Mb of main memory and a 512K L2 cache. This architecture

includes a 16K L1 instruction cache and a 16K L1 data cache. The system was

running an installation of FreeBSD version 2.2.6, with only the necessary system

services active. The Microsoft JVM results were obtained on an identical machine

running Windows 95 using the Microsoft Java virtual machine shipped with Visual

Table 4.1. Java virtual machines, standard Java libraries, and JDK version.

Virtual Machine Libraries “version”

Alta Kore JDK 1.0.x
Kaffe v0.92 Sun JDK 1.1.3
Kaffe v1.0b2 Kaffe JDK 1.1.x
MS JVM Microsoft JDK 1.1.7
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J++ v6.0.

All of the Java virtual machines measured in this chapter support JIT compila-

tion. When appropriate, tests were written to avoid including the time used by the

JIT compiler in the results. For tests that measure whole-application performance,

JIT compilation was necessarily included. Additionally, garbage collection was

prevented during timing loops by cleaning the heap before a timing loop and

ensuring that sufficient space for dynamic allocation requests was available.

For Alta, CPU usage is measured with the Pentium cycle counter.2 The cycle

counter provides a very accurate, low-overhead measure of processor time. It is

directly accessible in a processor register from user-mode. For the stock versions of

Kaffe, the standard method java.lang.System.currentTimeMillis() was mod-

ified to return the current value of the cycle counter instead of the current time

in milliseconds. For the Microsoft virtual machine, the “PIT timer” was accessed

through the Win32 kernel function QueryPerformanceCounter(). This timer fires

1,193,180 times per second. That translates to just over 251 cycles per PIT clock

cycle on a 300Mhz machine. The Microsoft virtual machine numbers are reported

as a number of clock cycles derived from the measured number of PIT ticks.

4.3.1 Benchmarks

I present performance benchmarks of a number of distinct features of Alta: ob-

ject allocation, thread-switching, IPC, process creation, and file-system read/write.

For those features that are available in a basic Java virtual machine, performance

is compared to stock versions of Kaffe and to a Microsoft Java virtual machine.

These comparisons serve two purposes. First, they compare the Kaffe-based

virtual machines to the Microsoft virtual machine, an aggressively optimizing vir-

tual machine [48, 54], highlighting areas where Alta and Kaffe could be improved

in general. Second, by comparing with the base versions of Kaffe, these micro-

benchmarks provide insight into the cost of supporting multiple processes in Alta,

2The installed version of FreeBSD was modified to not reset the cycle counter at each timer
interrupt, as is done by default.
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with respect to small, specific operations.

4.3.1.1 Basic virtual machine features

The first set of benchmarks measure basic features of a virtual machine: assign-

ment, run-time type checking, and method invocation. Each operation was repeated

(10,000 times) and the total cost of the experiment was divided by 10,000. Results

from 34 of these trials were averaged (and rounded to the nearest whole cycle) to

get the numbers shown in Table 4.2. For all of the results in this table, the range

covered by the thirty-four trials was never more than eight cycles. Architectural

artifacts such as cache effects, branch target alignment, mispredictions and memory

stalls can easily generate timing variations on the order of 15 cycles, so results and

deviations less than about fifteen cycles should simply be read as “real small.”

Two conclusions can be drawn from these results. The first, and most important,

is that the performance of basic features of the virtual machine are not signifi-

cantly changed by supporting multiple nested processes. The two discrepancies

are assignment to an Object array (the fourth line of the table) and synchronized

Table 4.2. Basic benchmark results for the four Java virtual machines.

Benchmark Alta Kaffe Kaffe MS
v0.92 v1.0b2 JVM

(Do nothing) 7 6 8 2
o = null 8 9 7 3
int[] assign 13 12 13 5
Object[] assign 34 28 28 17
instanceof (same) 57 49 28 N/A
instanceof (different) 91 97 39 N/A
checkcast (same) 59 65 41 N/A
static method (this) 6 5 5 2
static method 5 7 5 3
instance method 24 24 24 8
instance method (args) 35 34 26 12
synchronized method 156 132 250 47

Times reported in cycles.
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method invocation (the last line of the table). Assignment of an object into an

Object array is slower in Alta due to the changes made to the type system. These

changes also impact the “instanceof (same)” benchmark, which measures the cost

of Java’s instanceof operator. Both benchmarks include a runtime type check;

because Alta has a slightly more complex notion of type than a traditional Java

virtual machine, Alta takes slightly longer. The synchronized method invocation

benchmark slows considerably in the later version of Kaffe due to changes in the

locking primitives. Note that the 1.0b2 version of Kaffe includes optimized method

invocation and optimized runtime type checking.

The second conclusion that can be drawn from these results is that Alta is

substantially slower than the Microsoft virtual machine. Compared to the Microsoft

virtual machine, the Kaffe-based virtual machines take three times as long to

invoke instance methods, three times longer to invoke synchronized methods, and

about twice as along to do everything else. This result implies that the absolute

performance of the Kaffe-based virtual machines could be dramatically improved

by optimizing the most basic primitives.

Continuing with benchmarks of basic virtual machine operations, Table 4.3

presents three measurements of thread overhead. The first row presents the cost

of switching threads using Object.wait() and Object.notify(). The second row

presents the cost of switching threads using the Thread.yield() call. Both of

these tests create optimal conditions: the threads do nothing but switch back and

forth. The wait/notify test measures thread switching overhead in the case of two

Table 4.3. Thread switching and thread start costs.

Benchmark Alta Kaffe Kaffe MS
v0.92 v1.0b2 JVM

Thread switch (wait/notify) 540 1,707 1,450 13,881
Thread switch (yield) 186 BUG 467 6,711
Thread start 55,413 93,209 49,021 222,308

Times reported in cycles.
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threads that are trying to synchronize with each other. The yield test measures

thread switching overhead for the case of threads that are simply sharing the same

processor.

The third row of Table 4.3 shows the time taken to start a new thread. This

test measures the time from the invocation of Thread.start() to the beginning

of the run() method in the target thread—it does not include the time to allocate

the thread object. It should be noted that the locking and thread switching in Alta

have been optimized with aggressive inlining and lock caching and the results for

Kaffe v1.0b2 could be trivially brought in line with Alta’s results as both virtual

machines use the same threading package. (Kaffe v0.92 on the other hand, uses a

completely different threading package.)

Kaffe’s thread support is written as a user-mode thread package implemented

with sigsetjmp() and siglongjmp(), while the Microsoft virtual machine uses ker-

nel threads. Comparing a user-mode implementation to a kernel-mode implemen-

tation is usually a comparison of “apples to oranges,” but Kaffe’s thread package

correctly uses nonblocking I/O operations to mitigate most of the shortcomings

of a user-mode thread package, which eliminates the major distinction between

user-level and kernel-supported threads. On the other hand, by using a user-mode

thread implementation, Kaffe cannot simultaneously schedule threads on multiple

CPUs.

These benchmarks show that support for nested processes has not impacted

the thread scheduling primitives of the Java virtual machine. It must be noted,

however, that the nested process model’s thread scheduling model, CPU inheritance

scheduling, has not been implemented in Alta.

4.3.1.2 Object allocation

The next set of benchmarks measure the time to allocate an object. Alta adds a

single 4-byte pointer to the per-object overhead and charges each allocation against

the appropriate memory pool. To better quantify this overhead, additional Alta

results are obtained with memory pool support completely removed—that is, Alta

was compiled without the per-object overhead and without the memory accounting
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code included. Like the threading support, object allocation in Alta has been

optimized—mostly through aggressive inlining. For comparisons to Kaffe, Alta’s

GC system is closer in lineage to the later version of Kaffe.

As shown in the first two columns of Table 4.4, the per-object accounting scheme

in Alta adds an overhead of 50 to 150 cycles to the allocation cost of a basic object.

There is significant overhead for the allocation of the kernel-managed core objects

when memory pool support is enabled, as seen in the rows for the core Reference(),

Cond(), Mutex(), and Thread(). For these objects, the overhead of memory pool

support is approximately 2500 cycles (about 8us on a 300Mhz machine). These

extra cycles are used to register the core object with the owning memory pool so

that when the memory pool is destroyed the core objects will be properly cleaned

up and destroyed. Note that IPCPayload and ClassHandle are not “core objects,”

they only exist to simplify passing parameters to and from some system calls.

While there is a much more substantial overhead for core objects, these objects

are generally allocated only when starting up new processes or threads. Addition-

Table 4.4. Cost of creating a variety of objects.

Allocation Alta Alta Kaffe Kaffe MS
(-MP) v0.92 v1.0b2 JVM

(Nothing) 8 8 8 9 10
(o = null) 9 9 8 10 8
java.lang.Object() 396 324 534 673 145
int[32] 680 613 952 974 405
SubClass() 475 373 646 735 145
SubClass(1,2,3) 493 355 658 725 155
java.lang.Throwable() 1,111 985 BUG 2,053 13,441
core IPCPayload() 707 432 - - -
core ClassHandle() 409 341 - - -
core Reference() 3,573 1,734 - - -
core Cond() 5,046 2,537 - - -
core Mutex() 5,883 3,083 - - -
core Thread() 11,861 8,695 - - -

Times reported in cycles.



54

ally, the code that registers core Alta objects is written in Java and would benefit

from improvements to bytecode compilation.

To reduce the overhead (both in time and space) of charging each object to a

memory pool, a virtual machine could charge a memory pool on a per-page basis

and allocate multiple objects out of the page. This approach has the advantage of

reducing per-allocation costs by amortizing them over the number of objects in a

page, but has the disadvantage of increasing the memory usage of an application

because the application would be required to pay for an entire page of objects, even

if only one or two objects are allocated on that page. Despite these shortcomings,

this approach would probably bring an improvement to the per-object accounting

overhead. This cost is compounded in virtual machines, such as Kaffe, that pre-

divide pages into similar sized objects. Notice that this optimization would not

greatly reduce the overhead associated with Alta’s kernel objects.

In summary, while there is a measurable overhead to per-object accounting, it

is insignificant for basic objects. For kernel objects there is a more significant cost.

4.3.1.3 Interprocess Communication

This section provides a breakdown of the interprocess communication (IPC)

costs in Alta. The single number that all the other results in this section revolve

around is 18,524 cycles (just under 62us on a 300Mhz machine): the time required

for a complete, local, null IPC. Specifically, finding a server thread from a port

reference, connecting to the server, sending a null request and receiving a null reply

and then disconnecting. To put this measurement in perspective, a null IPC in

Alta is almost eight hundred times more expensive than a method invocation. Like

all of the IPC results in this section, this number is the average of 34 trials. Each

trial makes 10,000 repeated null IPCs and divides the time taken by the number of

iterations. The standard deviation of the 34 null IPC trials is 83 cycles.

As a point of comparison, a Fluke kernel with the “same” IPC path completes

a null IPC in about 7,500 cycles. A more detailed comparison between Alta and

Fluke is made in Section 4.4. The most recent incarnation of Fluke, which contains

a completely rewritten IPC path can complete a null IPC in about 3,800 cycles.
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In addition to the null IPC benchmark, I present results for copying data through

IPC, sharing objects through IPC and a breakdown of costs along the IPC path.

4.3.1.3.1 IPC with data. Two slightly more complex IPC benchmarks

are the time to marshal, send, receive and unmarshal 3 integers and the time to

marshal, send, receive and unmarshal a 100-byte java.lang.String. Alta requires

about 22,000 cycles to send three integers, implying that it takes on the order of

3,500 cycles to marshal three 32-bit integers into a byte buffer, copy the byte

buffer from client to server, and then unmarshal the three integers from the byte

buffer. Transferring a 100 character String through IPC requires about 31,000

cycles, implying that an astounding 12,500 cycles are required to convert a String

to an array of 100 bytes, copy the 100 bytes, and convert them back to a String.

To verify this overhead, two benchmarks that attempt to measure the non-IPC

computations were run on all of the virtual machines. The first benchmark marshals

three integers into a 12-byte array, copies the byte array, and unmarshals the three

integers out of the array. The second benchmark marshals a 100-byte String into

a 100-element byte array, copies the byte array, and unmarshals a String from

the resulting byte array. Table 4.5 displays the results. Note that all four virtual

machines use a different class library, and much of the difference in the String

benchmark could be due to the performance of the String class’s implementation.

The Microsoft virtual machine is probably optimizing the integer constants out of

the loop in the “Integer marshal” benchmark and might be inlining the array copy

in both benchmarks. The discrepancy between the numbers in this table and the

Table 4.5. Marshaling costs for three integers or a 100-byte String.

Benchmark Alta Kaffe Kaffe MS
v0.92 v1.0b2 JVM

Integer marshal 677 518 530 38
String marshal 8,017 6,925 9,399 3,637

Times reported in cycles.
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estimates in the previous paragraph is quite noticeable. There are 3,000 “missing”

cycles for the integer benchmark and 4,500 “missing” cycles in the String-copy

benchmark.

Notice that the performance gap between the Kaffe-based virtual machines and

the optimizing Microsoft virtual machine has increased relative to the difference in

previous benchmarks. More Java code is used in the benchmarks, so the Microsoft

optimizer has more code to work with.

4.3.1.3.2 Sharing via IPC. Another way to send a 100-character java.-

lang.String is to send an object reference through IPC. Doing so with Alta

requires about 20,000 cycles—1,500 more cycles than a null IPC, but about 11,000

less than marshaling and unmarshaling the String data.

The benefit of copying or sharing smaller data items is overshadowed by the

relatively high cost of IPC in Alta. If Alta’s IPC logic were significantly faster,

the cost of a data copy (which is basically fixed by the processor) would be a

more significant contribution to overall IPC time, and thus sharing data through

IPC would be more appealing (as IPC will always have a nonzero cost). Still,

the advantages of sharing a complex object and thus avoiding IPCs will always be

appealing. For example, a shared object representing an open file could correctly

keep track of the number of bytes available in the file and entirely avoid an IPC on

available() calls.

4.3.1.3.3 IPC cost breakdown. Table 4.6 shows a breakdown of where

time is spent in a null, round-trip IPC. The first column identifies the stage of the

IPC; the next two columns show the timestamp, in cycles, from the beginning of

the sequence and the difference from the last step, respectively. The last column

describes the state the thread is in and what it is doing. The entries in bold font are

the obvious bottleneck candidates. Additionally, the absolute times in this table

include the act of recording timestamps in the critical path, and thus the overall

execution time is inflated. Specifically, before exiting an IPC system call there is

at least an additional 2,500 cycles of overhead to write back the set of timestamps

from the IPC call; this overhead is only explicitly recorded in step 7 where the
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Table 4.6. Per-stage costs of a complete, round-trip null IPC.

Time Diff. Description

1 0 0 Client thread entered main IPC function.
2 374 +374 Client thread will start “connect” phase.
3 796 +422 Client cleared empty server link.
4 2,558 +1,762 Client found the waiting server thread and captured

it.
5 3,503 +945 Client transferred null request to the server thread.
6 3,798 +295 Client will begin reversing connection.
7 10,334 +6,536 Server thread has awoken and will return to user

mode (it has completed the previous ack-send-wait-
receive) and it will immediately begin a new ack-send-
wait-receive.

8 15,246 ˜1,700
(+4,912)

Server entered main IPC function and will start an
ack-send-wait-receive. Approximately 3,200 cycles of
extraneous measurement overhead were factored out.

9 15,453 +207 Server thread has entered main IPC loop.
10 15,696 +243 Server is about to begin handling the “ack-send”

phase.
11 18,699 +3,003 Server has found and captured the waiting client

thread.
12 19,365 +666 Server reversed the IPC connection. Client is now

receiver.
13 20,135 +770 Server completed send of null reply.
14 20,364 +229 Server will disconnect current client, begin wait-

receive processing for next client, and then will block.

15 26,396 +6,032 Client restarted and is resuming IPC.
16 26,572 +176 Client is about to exit the main IPC function and

return to user mode having completed a complete
round-trip null IPC.

Times reported in cycles.
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server thread is finishing its previous IPC call. Also, when entering an IPC system

call 700 cycles are required to initialize the timestamp buffer for recording; again,

this overhead is only recorded in step 7 when the server thread starts a new IPC

operation. (For the client, IPC system call entry overhead is recorded before step

1 while the exit overhead occurs after step 16.)

The five highlighted stages (stages 4, 7, 8, 11 and 15) are the obvious bottlenecks

candidates. Before explaining the bottleneck candidates, the costs incurred by the

other stages should be examined. First, consider the cost to get to stage 2 from

stage 1—374 cycles. Even allowing 200 cycles for the timestamp code,3 a lot of

cycles were used just to get from the function entry point to the first timestamp

before any “real work” gets done. In fact, there are only (in the Java source)

two assignment statements and three conditionals (one while-loop test and two if

statements) between the two stages. An explanation for this slowdown—the poor

performance of the Kaffe compiler—will be discussed later, in Section 4.3.1.4.

The bottleneck candidate stages all involve finding a thread, “capturing” a

thread or switching to a different thread. Threads can be “captured” by other

threads in the kernel—the target thread is removed from its wait queue, implying

that it will not be woken until the capturing thread explicitly wakes it or re-queues

it. These parts of the Alta kernel contain the heaviest use of synchronization. Steps

7 and 15 include a thread switch and the best-case cost of a thread switch is 540

cycles (for a wait/notify-style thread switch). Of course, the middle of the IPC

path is clearly not a best-case thread switch.

Additionally, by adding instrumentation code to the IPC path, the overall

execution time of a null IPC was increased by roughly 7,000 cycles (3,200 of which

are accounted for in stage 8), so in reality, the costs of each stage are somewhat

smaller. Because the majority of the IPC code path is implemented in Java,

improvements to the bytecode compiler would directly improve the performance

of Alta’s IPC.

3In a tight loop, the average cost of a timestamp is about 64 cycles; for a “cold-cache” test the
cost is about 274 cycles.
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The thread synchronization code in the bottleneck stages is a layer built, in Java,

above the low-level synchronization primitives used within the virtual machine. By

integrating the features required by the IPC code into the low-level synchronization

primitives, the performance of the bottleneck stages should improve.

4.3.1.4 Code Generation

One result implied by the IPC code breakdown is that even simple operations

are expensive in Alta. The code fragment presented in Figure 4.1 was used as a

simple test case to compare the Kaffe dynamic bytecode compiler versus the egcs

C compiler [14] and gcj [15], the Java front-end to egcs. The test function uses a

common subset of C and Java syntax, and is similar in structure to the main loop in

the IPC implementation. Table 4.7 compares the quality of the generated machine

code. Notice that, even for such a small and simple fragment of code, the Kaffe

JIT generates twice the number of instructions (taking four times as many bytes)

and five times the number of memory references as either of the static, optimizing

compilers, which implies there is significant room for improvement in converting

bytecodes to native instructions with Kaffe. It is important to note that the gcj

compiler used the bytecode generated by javac and not the Java source as input.

The code generated by gcj and egcs is quite similar, despite the disparity in the

inputs.

Table 4.7. A comparison of various Java native compilers.

Code Feature Java Kaffe JIT egcs gcj

bytecodes

Input source Java source Class file C source Class file
Generated output Class file x86 code x86 code x86 code

Instructions Generated 31 65 28 26
Bytes used (NOP bytes) 55 (0) 227 68 (8) 56 (6)
Memory references N/A 11 2 2
Stack references 11 12 2 2
Branch instructions 9 9 9 9
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int simple(int ops, int rc)

{

while (ops != 0)

{

if ((rc != 0) && (rc != 0x0F))

{

return rc|0xFF00;

}

if ((ops & 0x100) != 0)

{

ops = ops & ~0x100;

}

else if ((ops & 0x200) != 0)

{

ops = ops & ~0x200;

}

}

return 0;

}

Figure 4.1. A fragment of source code that is legal Java syntax and legal C syntax.
This small piece of source code mimics the style of the main IPC loop in Alta.

Because gcj is not complete enough, as of this writing, to compile any useful

portion of Alta’s Java source, comparisons of the run-time differences for the

compilers cannot be presented. Given the number of memory references made

by the Kaffe-generated code, and the size of that code, it seems obvious that a

significant gain in performance could be obtained by improving Alta’s JIT compiler.

Note that a JIT is not intended to rival the quality of code generated by an

optimizing ahead-of-time compiler.

4.3.1.5 Process Creation

Alta can create a nested process in approximately 39ms (11.9 million cycles).

The cost rises to 42ms if the cost of allocating and initializing the various objects

required by the parent is included. The cost is measured as the timestamp difference

from the parent process’s call to edu.utah.npm.core.Space.startMain() to the
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entry to the child process’s main() method. 39ms is an average of 11 trials which

have a standard deviation of less than 1ms . The time to start a child includes the

time to fault in 26 classes including basic I/O classes, simple exceptions, and other

miscellaneous classes.

In comparison, an Alta thread is created in about 0.2ms (see Section 4.3.1.1),

and a fork() and exec() of a very simple C program under FreeBSD takes

about 0.7ms . Using java.lang.Process.exec() (based on FreeBSD’s fork()

and exec()) to start a new Kaffe process from within Kaffe requires approximately

300ms . Because a large portion of the time spent starting a new Alta process is

used to fault in the most basic classes, moving to a static definition of a process’s

typespace would probably improve the performance of process creation greatly (see

Section 5.3). Additionally, unlike fork-and-exec in FreeBSD, which can simply

share the executable’s memory image between a parent and child, Alta re-links

every critical class object in the context of the new process. Again, the cost

of Alta’s very dynamic class loading mechanism could be mitigated by using a

more static definition of a process typespace. Lastly, the compiled code in Alta

is process specific and thus this benchmark includes the time to compile and

execute all of the methods invoked before main()—a number of constructors and

java.lang.ThreadGroup.add().

4.3.1.6 Interposition

To estimate the cost of interposition, two different scenarios are measured. First,

the cost of interposing on the class name resolution of a child process is measured

and second, the cost of interposing on the file system access interface is measured.

Both of these tests use the Alta sandbox, a simple application that interposes on

the parent interface, for class loading and memory control, and on the file system

and file I/O interfaces.

First, to measure the cost of interposing on class name resolution, I executed,

in the Alta sandbox, a simple program that dynamically loads a fixed number of

classes. The loaded classes are minimal and require very little run-time initializa-

tion, so the time recorded for loading such a class should be dominated by the
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overhead of class loading. Running this test case as a child process of the sandbox

measures the overhead of loading a class by faulting via IPC to a parent. These

tests measure the worst case for loading a class because the class is not already

loaded into the parent process. Table 4.8 presents the results. A parent process

adds about 89,000 cycles (just under 0.3ms on a 300Mhz machine) of overhead to

class loading. Because class loading is generally expensive anyway (most class files

require more involved initialization than the minimal class files used in this test),

this overhead does not seem unreasonable. Additionally, classes are only loaded

once in a process. The performance of this operation could be improved by moving

to an IPC implementation that takes advantage of idempotent semantics, or moving

to a static definition of a process’s class mapping.

Table 4.9 shows the overhead associated with interposing on the file read in-

terface. A simple benchmark which makes 256 consecutive 128-byte reads from a

file was repeated 34 times, and the resulting times averaged. The benchmark was

run under zero to five sandbox processes. Interposing on the file read interface is

approximately 10,000 cycles cheaper than interposing on the class loading interface.

This difference is due to the more complex processing on both the client and server

when handling class objects. The difference between copying a 128 byte buffer and

sharing the buffer—several thousand cycles—is lost in the cost of the interposition.

Table 4.8. Class loading costs in nested processes.

Sandbox Average time to Difference from
nesting depth load a class previous

0 206,000 -
1 291,000 85,000
2 370,000 79,000
3 460,000 90,000
4 547,000 87,000
5 653,000 106,000

Times reported in cycles.



63

Table 4.9. Interposed file read costs.

Sandbox Time to read Time to read
nesting 128 bytes Change 128 bytes Change
depth (shared buffer) (buffer copy)

0 2,800 - 2,900 -
1 66,000 63,200 73,900 71,000
2 128,700 62,700 144,300 70,400
3 196,400 67,700 222,600 78,300
4 266,000 69,600 297,300 74,700
5 337,500 71,500 387,800 90,500

Times reported in cycles.

4.3.1.7 Application performance

To test of the impact of interposition on actual application performance, Sun’s

Java compiler (a Java application) was run on Alta, under nested sandbox ap-

plications. The sandbox server interposes on the class loading interface, the file

system interface and the file I/O interfaces. The sandbox does nothing but pass

the interposed request on, so these results measure the minimum overhead for

interposition. The compiler was given 24 different, small files to compile. Table 4.10

shows how long it took (in milliseconds) to compile the 24 files when the compiler

Table 4.10. Compilation costs in nested processes.

Sandbox Time to compile Difference from
nesting depth 24 files previous

0 3,342 -
1 3,781 439
2 4,141 359
3 4,556 415
4 4,959 403
5 5,428 469

Times reported in milliseconds.
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is nested within zero to five sandbox processes. The times reported are an average

of 34 trials and do not include the cost of starting the virtual machine, only

the time from the invocation of the compiler’s entry point to the invocation of

java.lang.System.exit() Note that JIT compilation of the compiler and some

GC time are included.

Each additional level of nesting adds a fairly constant cost of 400ms to the

compilation time. The most important aspect of this result is that the interposition

costs in this table grow linearly with the number of interposition levels.

4.4 Comparison with Fluke

Comparing Alta to existing virtual machines provides a sense of the cost of

adding processes to a Java virtual machine, but how does the system compare

to existing, hardware-based operating systems? Because Alta is based on the OS

model developed for the Fluke operating system, Fluke is the obvious choice for

a comparison. This section begins with a comparison of how well the model from

Fluke was able to map into Java, explains some of the differences and then presents

some quantitive comparisons.

4.4.1 Implementation comparison

Obviously the interfaces and their semantics are borrowed from Fluke, but Alta

also borrows structure from Fluke’s implementation. For example, Alta’s IPC

implementation is, in large part, a Java translation of Fluke’s IPC implementation

(written in C). Many of the kernels internal structural details are similar. For

example, Fluke’s internal relationships between threads, ports, port sets, and IPC

is maintained in Alta. Internally, the Alta kernel represents objects with the same

structure as Fluke, but Alta takes advantage of Java’s support for objects.

This structural similarity between the systems enables comparisons between

the programming languages and their relative applicability to writing system soft-

ware. The current state of Java code compilation, however, makes a comparison

of the performance of Java versus C in system software untenable. The results in

Section 4.3.1.4 demonstrate that there is potential for significant improvements in
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Java compilation in the near term. Additionally, the Alta kernel is written in more

of a C coding style than a highly object-oriented Java style, so kernel code should

not suffer unduly from overhead due to dynamic dispatch—a traditional bottleneck

in highly object-oriented systems [3].

While a lot of functionality was copied from Fluke, not all of Fluke’s features

were implemented in Alta. For example, Alta only implements reliable IPC and

does not (yet) support the best-effort or at-least-once IPC mechanisms supported

by Fluke. Originally, I thought reliable IPC would be sufficient, but there are two

places where at-least-once IPC (for idempotent operations) would improve Alta.

First, if the class fault used it, then class faults could be triggered in the middle

of reliable IPC operations that cause a new class to be loaded. For example, when

a process sends an object to another process that does not yet have the object’s

class loaded. Additionally, at-least-once IPC would use less memory and thus be a

better candidate for delivering out-of-memory signals to a parent memory pool.

While Alta supports the Fluke condition variable and mutex objects, they are

redundant with the native monitor support, via the synchronized keyword, in

Java. Additionally, the kernel exceptions and per-thread exception handlers defined

by the Fluke API are not required in Alta because of Java’s native support for

exception objects and exception handlers.

One important and compelling difference between Alta and Fluke is the treat-

ment of objects that have both kernel-private and user-accessible portions. To

protect kernel-private data, Fluke uses “schizophrenic” objects that have separate

kernel and user-mode portions. In most cases the user-mode object is just a

handle, and the kernel-half of an object is looked up from the handle (just as file

descriptors work in traditional Unix systems). Alta, on the other hand, can take

advantage of the language protections provided by Java and can make data members

“private”—which hides them from untrusted user code without denying access to

trusted kernel code associated with the object. Besides avoiding the cost of looking

up a kernel object for each user-mode object, this flexible protection allows other

optimizations. For example, the Alta kernel can charge the cost of allocating kernel
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state to the user at the time the user-mode portion is created—which simplifies the

kernel implementation.

One final benefit of type safety is that user-visible kernel objects will always be

correctly initialized before any operations are performed with them as the object’s

constructor is guaranteed to be invoked before the first usage. This constraint

means code in the critical path does not need to check to make sure that an object

is properly and completely initialized. Additionally, in Java, operations can be

invoked only on legitimate objects, while in Fluke, a kernel operation can be invoked

on any address and the kernel must verify the given address.

Another compelling difference between Alta and Fluke is the ability to safely

share objects between processes in Alta. While the benefits of this have yet to be

fully demonstrated, it seems reasonable to assume that being able to access data

directly—without IPC or object serialization—and safely will improve performance

and enable new applications. Keep in mind that sharing Java objects is not simply

sharing of raw data; sharing includes the code to access and manipulate the object,

too. Additionally, type safety can be leveraged to mitigate one of the traditional

weaknesses of capability systems: capability propagation. In a traditional capability

system, if one process hands a capability to another process, the original owner of

the capability has effectively lost control over the propagation of that capability.

The recipient of a capability can pass it on to other processes without informing the

original owner. In a type-safe system, the recipient of a capability could be trusted

code that is impenetrable to the process that receives the capability. Assuming

that only trusted code can access the capability in a child process, then additional

guarantees can be made. For example, the trusted code could guarantee that only

legitimate operations are invoked on the capability, or that operations are only

invoked if sufficient resources are available in the client.

The final distinction between Alta and Fluke is that Alta does not support

state extraction for kernel objects, yet still provides an effective foundation for

nested processes. As noted in section 3.2.7, Fluke kernel object state extraction

is used for a comprehensive checkpointer, virtual memory servers, and process
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migration. The cost of this support, however, is a more complex kernel inter-

face and implementation, specifically in the implementation of IPC and thread

support [47]. Alta demonstrates that significant functionality—namely resource

control—can be provided by the nested process model independent of support for

total state extraction.

4.4.2 Performance comparison

The Fluke benchmark results were obtained on the same machine used for

measuring Alta, a 300Mhz Intel Pentium II. Two versions of Fluke are measured.

First, the August 1996 version, which contains the IPC path copied into Alta. The

second version is the January 1999 version of Fluke, which includes a revamped

IPC framework and a number of optimizations to support user-mode kernel ob-

jects [18]. Note that the new version of Fluke supports two modes of execution

for in-kernel threads, a stack-per-thread (process model) or stack-per-processor

(interrupt model) [21]. The interrupt model has a slight performance advantage,

but the process model is the execution model used by Alta. Fluke was configured

for process model execution when it was measured.

Table 4.11 compares Alta and the two versions of Fluke in terms of primitive OS

operations. Alta outperforms the old version of Fluke in all of the listed operations,

except for Reference.compare(). Alta loses on this function call because Alta’s

Table 4.11. A comparison of Fluke and Alta.

Benchmark Alta Old Fluke New Fluke

Thread.self() 13 378 4
Null system call 192 N/A 302
Port.reference() 891 1,363 649
Reference.compare() 2,911 1,361 6
Uncontested mutex lock/unlock 1,644 1,744 17
Thread Switch (yield) 185 N/A 519
Thread Switch (wait/notify) 540 2,866 1,268

Times reported in cycles.
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Reference objects are correctly tracked by the object to which they point, and

when a reference-able object is destroyed, all attached Reference objects are cleaned

up. In contrast, Fluke’s References can keep referenced objects “alive” even after

those objects have been explicitly destroyed. This extra functionality requires an

extra layer of locking in Alta—notice, though, that this extra locking does not

unduly inflate the Port.reference() time. Additionally, Reference.compare()

is implemented purely in Java and is thus hampered by the Kaffe JIT compiler.

When compared to the newest version of Fluke, Alta loses out to Fluke’s

user-mode code optimizations. All of the operations that Fluke completes faster

than a null system call are, obviously, wholly user-mode operations. All of these

optimizations could, however, be incorporated into Alta, as they all rely on the fact

that Fluke exposes noncritical parts of kernel objects to user mode; a fact that holds

true for all kernel objects in Alta. Still, Alta is more than twice as fast at thread

switching, and has a cheaper null system call. (Note that an Alta system call is on

par with a synchronized method invocation, which takes 156 cycles.) Overall, Alta

demonstrates reasonable performance for fundamental operations when compared

to Fluke.

For higher-level, more complex OS operations, Alta does not compare as well.

Table 4.12 shows that for thread startup, process startup, and null IPC, Fluke

outperforms Alta. Note that, in this table, the process start measurements are

approximate, as they include some IPCs for transferring timestamps from the parent

Table 4.12. Comparison of OS operations in Alta and Fluke.

Benchmark Alta Old Fluke New Fluke

Thread Start 55,413 7,806 3,794
Null IPC 18,524 7,519 3,843
Process Start 11m 1m 3m

Times are reported in cycles. For process start times, the “m” stands for
“million.”
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process to the child process. Figure 4.2 shows that while Alta’s IPC is consistently

slower than IPC in either version of Fluke, the difference is constant. Figure 4.3

shows that the gap between Alta and Fluke is constant for all reasonable data sizes.

To get a better sense of why Alta IPC is three times slower than the old

Fluke implementation’s, Table 4.13 (p. 71) presents a breakdown similar to that

presented in Table 4.6. This table includes a breakdown from the old Fluke IPC

implementation. In this table, the differences between stages are comparable,

except for stages 7, 8, 11, and 15, where Alta requires several thousand more cycles

than Fluke to complete the stage. All four of these stages involve kernel-internal

thread synchronization routines. In Alta this synchronization is written entirely in

Java and duplicates functionality that is present in the virtual machine but which

is not cleanly exposed to Java code; Alta could be modified to take advantage of

this synchronization at a low level. Assuming this were the case, Alta would still be

slower than Fluke because all the other stages of the IPC path are uniformly slower
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Table 4.13. Comparison of a null IPC cost breakdown between Fluke and Alta.

Alta Fluke
Time Diff. Time Diff. Description

1 0 0 0 0 Client entered main IPC loop.
2 374 +374 45 +45 Client will start “connect” phase.
3 796 +422 177 +132 Client cleared server connection.
4 2,558 +1,762 1,927 +1,750 Client found waiting server thread

and captured it.
5 3,503 +945 2,116 +189 Client transferred its null request to

the captured server thread.
6 3,798 +295 2,162 +46 Client will invert connection.
7 10,334 +6,536 3,381 +1,219 Server thread awoken, will return

to user mode, and will immediately
begin a new ack-send-(disconnect)-
wait-receive call.

8 15,246 +4,912 4,086 +705 Server entered main IPC loop and
will start an ack-send-(disconnect)-
wait-receive. Includes measurement
overhead.

9 15,453 +207 - N/A Server entered main IPC loop.
10 15,696 +243 4,142 +56 Server is about to begin handling the

“ack-send” phase.
11 18,699 +3,003 4,789 +647 Server has found and captured the

waiting client thread.
12 19,365 +666 - N/A Server reversed the IPC connection.
13 20,135 +770 4,966 +177 Server completed send of null reply.
14 20,364 +229 5,853 +887 Server will disconnect client then

block.
15 26,396 +6,032 - N/A Client restarted and is resuming IPC.
16 26,572 +176 6,656 +803 Client is about to return to user

mode.

Times are reported in cycles.
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in Alta—ideally even this difference will diminish with improved Java compilation.

4.5 Conclusion

Alta demonstrates the feasibility of hosting operating system abstractions de-

signed for an MMU-based architecture in a system based around the type safety pro-

vided by Java. Alta demonstrates that while there are some shortcomings to Java

as a systems programming language, they can be worked around cleanly. Creating

new processes in Alta is expensive, but most of this cost can be attributed to the

high cost of dynamic class control. Using a static definition of a process’s typespace

would simultaneously improve loading times, by completely avoiding frequent and

costly IPC calls, and increase the set of interprocess-shareable classes. While recent

versions of Fluke strikingly outperform Alta on a number of benchmarks, extending

the JIT compiler to support inlining should bring these benefits to Alta, too. While

an in-depth comparison between the performance of these two systems is hampered

by the quality of the native code generator in Kaffe, the initial results look promising

for the performance of Java based systems.



CHAPTER 5

FUTURE WORK

There are many directions to pursue beyond this initial work. The most promis-

ing endeavor, in terms of novel research, would be to provide accounting and control

over the resources used by the garbage collector, although this is addressed to some

extent by KaffeOS (described in Section 6.1.2). The second major effort would be

to provide a formal analysis of Alta’s type system and prove type safety under this

new system. These future directions and several others are explained in detail in

this chapter.

5.1 Resource accounting and garbage collection

In a system that enforces total separation of processes, it is quite easy to “clean

up” after terminating a process as there are no interdomain references to keep track

of. The majority of resource accounting problems stem from fine-grained object

sharing between domains with different resource principals. The current design for

Alta provides processes with mechanisms to control interdomain sharing, but Alta

only accounts for shared resources in a very simple manner.

The first weakness in Alta is exposed at object allocation time. The thread

allocating the object is charged for the object’s memory. This policy is generally

good enough, but does not work if, for example, a server allocates an object and

passes it to a client—there is no way to transfer the memory cost of the object

in Alta. Alternatively, charging an object’s memory to the processes that use the

object might be more representative of the actual memory costs involved, but could

lead to asynchronous memory exceptions. For example, consider a large object to

which many domains hold a reference and where each domain is charged a portion

of the total memory cost; if many of the domains release their reference to the
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object, the memory cost for the remaining domains will increase. Asynchronous

exceptions resulting from such increases would make the already complicated task

of writing multithreaded code far more complicated.

The second resource-related weakness is that Alta makes no attempt to charge

particular processes for the resources required to run the garbage collector. This

weakness makes Alta vulnerable to poorly-behaved or malicious processes, and

weakens the system’s ability to provide strong quality of service guarantees.

For example, if a process A has a small working set, a small memory limit,

but a high allocation rate, it will necessarily invoke the global garbage collector

frequently. Other processes in the system will be paused as the GC runs. Note

that parent processes can constrain the number of invocations of the GC made by

a process, but A should be able to collect its own heap without impacting other

processes. One potential solution might be to restrict a process to an allocation

rate, thus restricting the amount of garbage a process can potentially generate and

indirectly constraining the work the garbage collector might need to do.

5.2 A formal analysis of the Alta type system

The simple statements defining Alta’s type system in Section 3.2.2.1 would

benefit from a formal analysis that proves the assertion that type safety in Alta

cannot be compromised by colluding processes. The formal analysis of the current

Java class loader system in [31] should provide terminology and a good basis for

the proof.

5.3 Static class maps

There are several scenarios where the dynamic nature of Alta’s IPC-based class

name resolution provides unused flexibility. For example, if a parent process simply

wants to deny access to all packages other than the standard java.* packages, or

simply wants to remap a few particular classes to customized IPC-based classes,

then the full set of class name mappings could be statically specified when the child

process is created. This has the advantage of reducing the run time overhead for

loading a new class. Additionally, a static class mapping scheme would provide the
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virtual machine with more information about how types map from one process into

another. This information could be leveraged to make the rules on sharable types

more flexible, specifically loosening the restriction on nonpolymorphic field types.

5.4 Reference revocation

The problems brought to resource accounting by interdomain references (see

Section 3.2.5) could be alleviated by enhancing the virtual machine to support ref-

erence revocation [4]. For example, the Alta kernel could explicitly erase references

to objects in a dying process, which would ensure that all of the objects owned by

that process are successfully reclaimed. This would have the advantage, similar to

a traditional hardware-based system, that the system could kill a process and all

of its shared objects and be guaranteed that all of the objects would be reclaimed.

Supporting reference revocation would require solving a number of other hard

problems [4]. First, finding all of the references to a revoked object would be

difficult, especially in the face of C code running in the virtual machine and

references on thread stacks. Additionally, the semantics of a thread executing

in the context of a method on a revoked object are not clear, and the ramifications

of revoking nontrivial objects such as threads, class loaders, and classes are also

very complicated. Finally, the overhead of tracking object references (or finding all

references on demand) would probably be great.

5.5 Integration of Fluke and Alta

Because Alta and Fluke share many of the same fundamental abstractions, com-

bining the two systems into a mixed enforcement environment should be possible. In

this mixed environment Java processes could intermingle with hardware-separated

processes and could control each other’s resources. For example, a Java-based web

server could create a hardware-enforced subprocess in which untrusted binaries

could be executed, or a native database system could create a Java-based subprocess

that contains and manages client queries written in Java. The simplest approach

would be to restrict interlanguage communication to a common, purely IPC-based

protocol. A more ambitious project would be to unify the memory and CPU
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scheduling abstractions to make for more seemless interaction between Java and

native code.

5.6 Alta applications

Another area of future work is to design and implement applications that take

advantage of Alta’s sharing model to provide unique and inexpensive services. For

example, a file server in Alta could be implemented entirely in Java libraries. The

shared file cache code would be executed entirely by clients; type safety would

guarantee the integrity of the file cache and the file system. A system that truly

exploits this sharing model would contain completely stateless servers that do no

work and consume no resources “on their own”—all of the resource consumption is

done by libraries in clients. The server, if any still exists, merely coordinates and

maintains persistent information that outlasts individual clients.

One of the difficulties faced by such a system would be synchronization in the

face of asynchronous process termination. The kernel is able to solve this prob-

lem by postponing asynchronous exceptions, but such a mechanisms is necessarily

unavailable to arbitrary (i.e., untrusted) user mode servers.



CHAPTER 6

RELATED WORK

Alta touches on a large body of related work in two specific areas: java-based

operating systems research and more general operating systems research.

6.1 Related Java work

There are currently six other Java-based projects that provide OS-style support

for Java applications in a single virtual machine: the J-Kernel, KaffeOS, the

Princeton JVM, Conversant, Sun’s JavaOS, and the E-Communities capability

system.

6.1.1 The J-Kernel

The J-Kernel [29] from Cornell is implemented entirely in Java and requires no

changes or enhancements to the virtual machine. The J-Kernel concentrates on

clean domain termination and provides this by enforcing complete separation of

processes, even between domains that have some degree of trust between them. As

pointed out by the J-Kernel authors, the “main problem with the approach taken

in the J-Kernel is that data structures cannot be shared directly among tasks,

thus not realizing one of the major potential gains of a language-based protection

model” [30]. Additionally, the J-Kernel’s cross-domain thread migration does not

provide true separation, as a thread can block in another domain, out of reach of

the owning domain. This model is sufficient for environments similar to applet

environments, where the callee is trusted by the caller.

The J-Kernel uses on-the-fly LRMI stub generation to guarantee that no object

references are passed between two domains. The stubs transparently convert any

implicit cross-domain references into capabilities. The generated capabilities pro-
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vide an indirect level of access to remote objects and insure memory separation for

processes. Alta, on the other hand, allows two processes to share object references

directly. Alta could use the J-Kernel’s dynamic stub generator to transparently

create IPC-based remote object interfaces for Java objects. Currently Alta’s IPCIF

interfaces are written by hand.

Because the J-Kernel has been restricted to an unmodified virtual machine, the

support for control over memory and CPU usage is cumbersome or ineffective. CPU

scheduling is done indirectly by manipulating thread priorities based on CPU usage.

Memory accounting only takes into account memory directly used by Java-level

objects; structures which are internal to the virtual machine are not charged to the

owning process. The pure Java approach used to implement the J-Kernel allows it

to take advantage of the best available Java virtual machine. Of course, resource

management in the J-Kernel would easily benefit from providing direct virtual

machine support as is done for Alta.

6.1.2 KaffeOS

KaffeOS is another Kaffe-based multiprocessing Java virtual machine from the

University of Utah [6]. KaffeOS separates each Java process’s heap and supports

independent garbage collection of each heap. KaffeOS builds its notion of a process

on top of Classloaders. Like Alta, KaffeOS will also support CPU inheritance

scheduling for CPU management. KaffeOS has an even more restrictive form of

interprocess sharing than Alta—the only mutable data that can be shared is prim-

itive types. KaffeOS uses run-time write-barriers to prevent interheap references

between processes. KaffeOS required no changes to the Java type system to support

its sharing and communication mechanism.

Because KaffeOS is built on the same foundation as Alta, incorporating many

of the engineering improvements—including garbage-collectible classes and CPU

inheritance scheduling—from KaffeOS into Alta should be straightforward. On the

other hand, reconciling the different process models and the different approaches

to sharing might prove to be more difficult. For example, KaffeOS’s per-process

garbage collection relies on KaffeOS’s restricted sharing model to avoid cross-
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process object references.

6.1.3 Princeton Multiprocessing JVM

Balfanz and Gong [7] describe a multiprocessing JVM developed to explore

the security architecture ramifications of protecting applications from each other,

as opposed to Sun’s focus of only protecting the system from applications. They

identify several areas of JDK version 1.2 that assume a single-application model, and

propose extensions to allow multiple applications and to provide interapplication

security. The focus of their multi-processing JVM is to explore the applicability

of the JDK 1.2 security model to multiprocessing, and they rely on the existing,

limited JDK infrastructure for resource control.

6.1.4 Conversant

A now defunct project from the Open Group Research Institute, Conversant [8]

used a modified a Java virtual machine—running on Mach [1]—to support multiple

Java processes. In Conversant, each Java process is provided with a separate,

contiguous range of the virtual machine’s address space, and a separate garbage

collection thread. Conversant uses the extreme approach of total separation of

processes within the virtual machine. Complete separation maximizes the effec-

tiveness of resource accounting and control as all resource usage is trivially charged

to the owning process. Conversant cannot, however, support any sharing between

processes, and thus foregoes one of the major motivations for a type-safe-language

based system.

6.1.5 JavaOS

Sun’s JavaOS [43] was originally a complete platform written almost entirely

in Java. It was described as a first-class OS for Java applications. From the

scant literature available, JavaOS appears to provide a single Java virtual machine

with no notion of a process or the ability to run multiple applications on that

virtual machine. Sun Microsystems is replacing JavaOS with a new set of “Java

operating systems”: “JavaOS for Business,” which only runs a single Java appli-
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cation; and “JavaOS for Consumers,” which is built on the Chorus microkernel

OS [37] to provide the real-time guarantees needed in embedded systems. Both of

these systems require a separate virtual machine for each Java application, which

results in unnecessary overhead for duplication of virtual machine structures and

initialization.

6.1.6 E-Communities capability system

Electronic Communities’ E extends Java with a capability-based framework

for distributed computing. E targets distributed Java systems (distributed across

multiple physical hosts), but many of the specified capabilities would be useful

on the local system. E’s capabilities are static—they are granted at object load

time—and E has no notion of a “process” or any other unit of resource control. E

does provide significant infrastructure useful for distributed Java applications, such

as digital signatures. Alta focuses on safety and resource control on the local node.

6.2 Related work in operating systems

Many research operating systems have used software protection mechanisms.

Some, such as Pilot, use software-based protection throughout the system. Others,

such as SPIN, use software-based protection only for kernel extensions.

6.2.1 Fluke

Fluke is a microkernel that only uses hardware protection mechanisms for pro-

cess separation. The nested process model was first implemented in Fluke and

much of Fluke’s implementation served as a blueprint for Alta’s implementation.

Fluke was described in detail in section 2.2 and compared to Alta in section 4.4.

6.2.2 Language-based operating systems

6.2.2.1 Pilot and Cedar

Pilot [36] and Cedar [44] are two of the earliest language-based operating sys-

tems. The whole of these systems (including user tools, OS internals, etc) was

written in the Cedar language. All processes operated in a single address space.

Because Cedar and Pilot were designed for single-user workstations, isolation of
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malicious or erroneous processes was not a goal and remained unenforceable. While

the Cedar language provided many safety properties, the system did not prevent

resource hoarding or the corruption of system data by malicious processes. Addi-

tionally, the language supported a set of “unsafe” features that were used in the

lowest levels of the system to circumvent many of the language’s safety properties.

In a Java system these “unsafe” features are written in C and are unavailable in

the language itself.

6.2.2.2 Oberon and Juice

The Oberon language and operating system [53] shares many of Java’s features,

although it is a nonpreemptive, single-threaded system. The designers assumed

that all operations undertaken on Oberon would be inherently short and they

assumed any compute-intensive work would be offloaded to a compute server.

These assumptions were valid when this system was designed in the mid-1980s.

Background tasks such as the garbage collector are implemented as consecutive calls

to procedures, where “interruption” can only occur between top-level procedure

calls (called commands in Oberon). All state for these background tasks is global.

While protection between tasks is enforced by the language, the exposure of global

state to all top-level procedure calls and the uninterruptibility of commands mean

that isolation of tasks is not enforceable.

The Juice project [24] uses Oberon and Slim Binaries [25] to provide a Java-like

environment for downloaded code. Juice is the conceptual equivalent of a Java

virtual machine, except that it does not interpret bytecodes—Juice expects binaries

in the Slim Binary format, which are converted to native code and executed directly.

Juice improves the distribution of platform independent binaries in two ways. First,

by distributing a form closer to a compiler-generated parse tree, Juice binaries,

unlike Java bytecodes, do not need to be verified. Second, Juice binaries provide a

more compact representation of a program than Java class files. Unlike Alta, Juice

does not address resource consumption or accounting.
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6.2.2.3 Inferno

Inferno [17] is a system developed at Bell Laboratories. Inferno consists of the

Limbo programming language and the Dis virtual machine. Limbo and Dis provide

type safety and verification facilities similar to Java’s. Inferno is oriented to network

applications and provides data streaming and strong networking support. Inferno

uses an extended file system namespace to provide applications with resources

(similar to Plan 9 [35]) and uses namespace controls to restrict application access

to those resources. Inferno does not support memory controls and does not appear

to maintain a clear distinction between application and kernel.

6.2.2.4 NewtonOS

NewtonOS [50] is an operating system that supports communication and syn-

chronization between processes within a single address space. Applications are

written in the NewtonScript scripting language. Because NewtonScript supports

pointers, the CPU’s paging hardware must be used to provide protection between

processes. The system, however, was only designed to run highly cooperative pro-

cesses that are mutually trusting. Under these assumptions interprocess protections

are not strictly necessary.

6.2.2.5 SPIN

SPIN [9] is an extensible operating system kernel that lets users load and link ex-

tensions, written in Modula-3, into the kernel. These extensions can interact tightly

with the kernel or other kernel extensions to perform virtual memory operations,

application-specific disk access, or other system-level functions. Unlike Cedar, SPIN

provides sufficient protection to allow untrusted modules but has no strict resource

controls. The language, with assistance from the linker, keeps extensions from

interfering with each other and from interfering with critical parts of the kernel.

To maintain control over extensions SPIN adds features to the language, such as

ephemeral procedures—in this case, to maintain preemptibility of an extension.

SPIN uses software-based protection only for kernel extensions; regular processes

are managed with traditional hardware-based techniques. SPIN was designed and
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optimized to provide a very rich interface to kernel extensions and does not provide

a general operating system interface for user mode processes. There is no notion

of “process” within the kernel and thus no interprocess communication or process

management. SPIN does not limit the memory resources of kernel extensions and

the only CPU management supported is termination of “ephemeral” extensions

that have exhausted their CPU allocation.

6.2.2.6 Vino

VINO is a software-based (but not language-based) extensible system [38] that

addresses some of the resource control issues raised by SPIN by wrapping kernel

extensions within transactions. When an extension exceeds its resource limits,

it can be safely aborted (even if it holds kernel locks), and its resources can be

recovered. Extensions, and the resources used by an extension, are shared equally

among all users; extensions do not run under the identity of the user code they are

executing on behalf of.

Like SPIN, VINO only uses software-based protection for managing kernel

extensions. Regular user-mode processes are managed with traditional hardware-

based page protections.



CHAPTER 7

CONCLUSION

Alta demonstrates the applicability of operating system concepts to a Java

virtual machine, leveraging type-safety where a traditional operating system would

leverage hardware-based protection mechanisms. Alta is also evidence that stan-

dard operating system abstractions can be easily implemented in Java, and that

traditional kernel implementation techniques are applicable in a Java-based oper-

ating system.

The work presented in this thesis makes the following four additional contribu-

tions to language-based operating system research:

• Extensions to the Java type system to support safe sharing between different

applications and a facility for renaming classes: Definitions of class and class

equality in a system with partially inconsistent typespaces were presented

along with a simple algorithm for determining if two classes are safe for sharing

between disjoint typespaces.

• Implementation of the Fluke nested process model in Java: Alta demonstrates

the applicability of Fluke’s nested process model to Java. By duplicating the

design, and in many ways the implementation, of Fluke in Alta, I was able

to evaluate the influence of Java’s programming model on Alta’s structure.

Additionally, using several detailed performance studies, I identified some of

the strengths and weaknesses of Java as a systems programming language.

• Support for multiple applications in a single Java virtual machine: Alta

demonstrates that a language-based operating system can, to a large degree,
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control and separate applications as effectively as a traditional, hardware-

based operating system without sacrificing Java’s safe, fine-grained sharing.

• Mechanisms for resource control in a Java virtual machine: Direct mech-

anisms to account for the total memory usage of a Java application were

demonstrated for Alta. Capabilities, a standard operating system abstraction,

were demonstrated as a mechanism for controlling secondary resources such

as files and the file system.



APPENDIX A

LOW-LEVEL NESTED PROCESS MODEL

API IN ALTA

The public interfaces for the following classes, which comprise the Alta kernel

interface, are listed in this appendix. For each class, any public fields, constructors

and methods are listed.

Classes

edu.utah.npm.core.ClassHandle

edu.utah.npm.core.Cond

edu.utah.npm.core.Debug

edu.utah.npm.core.IPC

edu.utah.npm.core.IPCPayload

edu.utah.npm.core.IPCWaitReceiveReturn

edu.utah.npm.core.MemPool

edu.utah.npm.core.Mutex

edu.utah.npm.core.Port

edu.utah.npm.core.PortSet

edu.utah.npm.core.Reference

edu.utah.npm.core.Space

edu.utah.npm.core.Thread

final class edu.utah.npm.core.ClassHandle:

Constructors:

ClassHandle()

Methods:

final void ClassHandle()
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final void ClassHandle(Class c)
final void useClass(Class cl)
final void disallow()
final boolean useWhatIUse(String name)

final class edu.utah.npm.core.Cond:

Extends Refable

Constructors:

Cond()
Cond(int hashCode)

Methods:

void wait(Mutex mutex)
void signal()
void broadcast()
void destroy()
String toString()
void finalize()

final class edu.utah.npm.core.Debug:

Constructors:

Debug()

Methods:

static void assertCheck(boolean expr, String exprStr, String file, int line)
static void assertCheck(Object ref, String exprStr, String file, int line)
static void dumpStats()
static void println(String str)
static void print(String str)
static void printInt(int i)
static void printIntHex(int i)
static void printIPCOps(byte ops)
static void printCharArray(char[] array, int start, int end)
static void exit()
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static void threadInfo(Thread th)
static void printStackTrace()
static boolean doTrace(int flag)
static void otsan()
static void otsan(String str)
static void notImplemented()
static void notImplemented(String expl)
static void dPanic(String str)

final class edu.utah.npm.core.IPC:

Fields:

static final int RC OK;
static final int RC CONNECT INVALIDDEST;
static final int RC ACK DISCONNECTED;
static final int RC SEND DISCONNECTED;
static final int RC OVER DISCONNECTED;
static final int RC RECV DISCONNECTED;
static final int RC RECV MOREDATA;
static final int RC RECV MOREREFS;
static final int RC RECV MOREOBJS;
static final int RC RECV REVERSED;

Methods:

static final int clientConnectSend(Reference destPortRef, IPCPayload
payload)
static final int clientAckSend(IPCPayload payload)
static final int clientSend(IPCPayload payload)
static final int clientConnectSendOverReceive(Reference destPortRef,
IPCPayload payload)
static final int clientAckSendOverReceive(IPCPayload payload)
static final int clientSendOverReceive(IPCPayload payload)
static final int clientOverReceive(IPCPayload payload)
static final int clientReceive(IPCPayload payload)
static final int clientDisconnect()
static final int clientAlert()
static final int serverAckSend(IPCPayload payload)
static final int serverSend(IPCPayload payload)
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static final void serverAckSendWaitReceive(IPCPayload payload, IPC-
WaitReceiveReturn out rc)
static final int serverAckSendOverReceive(IPCPayload payload)
static final void serverSetupWaitReceive(IPCPayload payload, PortSet
pset, IPCWaitReceiveReturn out rc)
static final void serverWaitReceive(IPCPayload payload, IPCWait-
ReceiveReturn out rc)
static final void serverSendWaitReceive(IPCPayload payload, IPCWait-
ReceiveReturn out rc)
static final int serverSendOverReceive(IPCPayload payload)
static final int serverOverReceive(IPCPayload payload)
static final int serverReceive(IPCPayload payload)
static final int serverDisconnect()
static final int serverAlert()
static final String errorToString(int rc)

class edu.utah.npm.core.IPCPayload:

Fields:

byte[] sendBuf;
int sendBufStart;
int sendBufEnd;
byte[] recvBuf;
int recvBufStart;
int recvBufEnd;
Reference[] sendRefTab;
int sendRefTabStart;
int sendRefTabEnd;
Reference[] recvRefTab;
int recvRefTabStart;
int recvRefTabEnd;
Object[] sendObjTab;
int sendObjTabStart;
int sendObjTabEnd;
Object[] recvObjTab;
int recvObjTabStart;
int recvObjTabEnd;
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Constructors:

IPCPayload()

class edu.utah.npm.core.IPCWaitReceiveReturn:

Fields:

int rc;
Object alias;

Constructors:

IPCWaitReceiveReturn()

final class edu.utah.npm.core.MemPool:

Extends edu.utah.npm.core.Refable

Constructors:

MemPool(long size, Reference pPoolRef, Reference spaceRef, Reference
keeperPortRef)
MemPool(long size, Reference pPoolRef, Reference spaceRef, Reference
keeperPortRef, int hashCode)

Methods:

long getSize()
long getAvailable()
void destroy()
String toString()

final class edu.utah.npm.core.Mutex:

Extends edu.utah.npm.core.Refable
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Constructors:

Mutex()
Mutex(int hashCode)

Methods:

void destroy()
void lock()
void unlock()
boolean trylock()
String toString()

class edu.utah.npm.core.Port:

Extends edu.utah.npm.core.Refable

Constructors:

Port(Object alias, Reference portSet)
Port(Object alias, Reference portSet, int hashCode)

Methods:

void setAlias(Object alias)
void destroy()
String toString()

final class edu.utah.npm.core.PortSet:

Extends edu.utah.npm.core.Refable

Constructors:

PortSet()
PortSet(int hashCode)

Methods:

void destroy()
String toString()
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final class edu.utah.npm.core.Reference:

Extends edu.utah.npm.core.NPMObject

Fields:

static final Reference NullReference;

Constructors:

Reference()
Reference(Refable refObj)
Reference(int hashCode)
Reference(Refable refObj, int hashCode)

Methods:

Class type()
void destroy()
boolean compare(Reference otherRef)
boolean equals(Object obj)
void nullify()
boolean check()
String toString()

final class edu.utah.npm.core.Space:

Extends edu.utah.npm.core.Refable

Constructors:

Space(Reference keeperPort, Reference memPool)
Space(Reference keeperPort, Reference memPool, int hashCode)

Methods:

static Reference currentTaskKeeperPort(Reference out ref)
static Reference currentTaskMemPool(Reference out ref)
void startMain(String threadName, String initialObj, String[] initialArgs)
void destroy()
String toString()
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class edu.utah.npm.core.Thread:

Extends edu.utah.npm.core.Refable

Constructors:

Thread(Reference spaceRef, Reference schedPortRef, Reference clientRef,
Reference serverRef)
Thread(Reference spaceRef, Reference schedPortRef, Reference clientRef,
Reference serverRef, int hashCode)

Methods:

static final void nullsyscall()
static final Thread self()
static final void interrupt(Thread thread)
static final boolean interrupted(Thread thread)
final boolean getClient(Reference out clientThreadRef)
final void setClient(Reference clientThreadRef, boolean isSender)
final boolean getServer(Reference out serverThreadRef)
final void setServer(Reference serverThreadRef, boolean isSender)
final void destroy()
static final void cancel(Thread th)
String toString()
String debugInfo()

class edu.utah.npm.core.Exception:

Extends java.lang.Exception

Constructors:

Exception()
Exception(String message)

class edu.utah.npm.core.Cancelation:

Extends java.lang.Error

Constructors:

Cancelation()
Cancelation(String message)
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class edu.utah.npm.core.DestroyedObjectError:

Extends edu.utah.npm.core.InvalidObjectError

Constructors:

DestroyedObjectError()
DestroyedObjectError(String detail)

class edu.utah.npm.core.Error:

Extends java.lang.Error

Constructors:

Error()
Error(String message)

class edu.utah.npm.core.Insanity:

Extends java.lang.Error

Constructors:

Insanity()
Insanity(String message)

class edu.utah.npm.core.InvalidObjectError:

Extends edu.utah.npm.core.Insanity

Constructors:

InvalidObjectError()
InvalidObjectError(String detail)



APPENDIX B

IPCIF: ALTA IPC-BASED INTERFACES

The set of IPCIF interfaces defined for Alta are described here. These interfaces

are designed to support the basic responsibilities of a parent process and to support

the standard Java class libraries, as of JDK 1.0.2, but without support for an AWT.

These interfaces are analogous to the “Common Protocol” interfaces in Fluke.

B.1 Parent interface

The parent interface is the “bootstrap” interface from which a process gains

access to all other IPCIF services. Every edu.utah.npm.core.Space object has

a port reference associated with it. Every process that creates a subprocess must

also handle the parent interface requests for that process.

ClassForName(String name) Returns ClassHandle
Given a fully qualified class name, return a edu.utah.npm.core.ClassHandle

object representing the class to bind that name to in the child.

LastThreadDied() Returns boolean
The child process will invoke this method when the last thread in the process

has expired.

Exit() Returns boolean
Perform an explicit process exit.

GetStandardIn() Returns Reference
The child will invoke this method as it is being initialized to setup its default

input stream. The edu.utah.npm.core.Reference returned should be compatible
with the file interface.

GetStandardOut() Returns Reference
The child will invoke this method as it is being initialized to setup its default

output stream. The edu.utah.npm.core.Reference returned should be compati-
ble with the file interface.
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GetStandardErr() Returns Reference
The child will invoke this method as it is being initialized to setup its default

error stream. The edu.utah.npm.core.Reference returned should be compatible
with the file interface.

ServiceMapServerReq() Returns Reference
The child will invoke this method to get a handle on the “Service Mapper”

service (see Section B.2). The service mapper is a basic name service, mapping
string names to ports. The returned edu.utah.npm.core.Reference is the port
through which all other services are acquired.

B.2 Service map interface

The Service Map is a generic name to port reference binding service. It supports

only one method.

handlePortForName(String name) Returns Reference
This method is invoked with a java.lang.String argument. The associated

port reference is returned.

B.3 MemPool interface

The MemPool Interface is used by parent processes that manage the memory

resources of a nested child. The child’s interface to the garbage collector (invocation

of the garbage collector and invocation of the finalizer) are accomplished through

this interface.

OutOfMemory(int shortAmt) Returns boolean
Invoked directly by the VM, this method indicates that a process has insufficent

memory in its MemPool (requiring shortAmt to proceed).

InvokeGC() Returns void
Invoke the GC.

InvokeFinalizer() Returns void
Invoke the finalizer thread.

AvailableMemory() Returns long
Returns the amount of memory available in child’s MemPool.

TotalMemory() Returns long
Returns the total amount of memory in the child’s MemPool.
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B.4 File system interface

The File System Interface supports method for performing file-system level

operations such as opening a file, renaming files, etc. These methods are used

by the IPC-based version of the java.io.File class.

CanRead(String path) Returns boolean
Returns true if the file specified by path is readable by the current process.

CanWrite(String path) Returns boolean
Returns true if the file specified by path is writeable by the current process.

Exists(String path) Returns boolean
Returns true if the file specified by path exists.

IsDirectory(String path) Returns boolean
Returns true if the file specified by path is a directory.

IsFile(String path) Returns boolean
Returns true if the file specified by path is a regular file.

LastModified(String path) Returns long
Returns the last modification timestamp (in milliseconds) of the file specified

by path.

FileSize(String path) Returns long
Returns the size (in bytes) of the file specified by path.

Delete(String path) Returns boolean
Deletes the file specified by path; returns true for success and false for failure.

Rename(String from, String to) Returns boolean
Renames the file specified by from to to; returns true for success and false for

failure.

Mkdir(String path) Returns boolean
Creates the directory specified by path; returns true for success and false for

failure. Does not create any required parent directories.

DirList(String path) Returns String[]
Returns an array of java.lang.String objects, one for each entry in the

directory given by path.

Open read(String path) Returns Reference
Returns a port reference to a File I/O Interface, corresponding to the file

specified by path. The file is opened in read-only mode.
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Open write(String path) Returns Reference
Returns a port reference to a File I/O Interface, corresponding to the file

specified by path. The file is opened for reading.

Open read write(String path) Returns Reference
Returns a port reference to a File I/O Interface, corresponding to the file

specified by path. The file is opened in read-write mode.

B.5 File I/O interface

The File I/O Interface represents a single open file.

Read(byte[] buffer, int toRead) Returns int
Reads toRead bytes into buffer from this file. Returns the actual number of

bytes read.

Write(byte[] buffer) Returns int
Write the entire contents of buffer into this file. Returns the actual number

of bytes written.

Skip(long bytes) Returns long
Skip forward bytes bytes in this file.

Ftell() Returns long
Return the current offset in this file.

Fseek(long offset, int whence) Returns long
Move the current offset pointer offset bytes in the whence direction (from the

beginning, from the end, or from the current position).

Close() Returns void
Close this file.

B.6 Network I/O interface

The Network I/O Interface corresponds to the File System Interface, but, obvi-

ously, provides an interface to networking services.

Socket(boolean streamsocket) Returns Reference
Create a stream socket or datagram socket (depending on streamsocket).

Returns a port reference to a File I/O interface.

Bind(byte[] addr, int port) Returns void
Bind the current descriptor to the given IP address and port.

Listen(int count) Returns void
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Flag the current descriptor to accept connections and to buffer count of them.

Accept(byte[] resultAddr, Reference acceptPortRef) Returns int
Accept a connection on the current descriptor. The resultAddr is the address of

the remote connection and acceptPortRef will point to the new File I/O descriptor
representing the connection.

Connect(byte[] address, int remotePort) Returns int
Connection to the given address and remotePort using the current descriptor.

DGSocket() Returns Reference
Create a datagram socket from the current descriptor.

Recv() Returns int
Receive a buffer of data on the current datagram descriptor.

Send() Returns int
Send a buffer of data on the current datagram descriptor.

Close() Returns void
Close the current socket.
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